精英家教网 > 高中数学 > 题目详情
13.过离心率为$\frac{{\sqrt{2}}}{2}$的椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点F(1,0)作直线l与椭圆C交于不同的两点A、B,设|FA|=λ|FB|,T(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若1≤λ≤2,求△ABT中AB边上中线长的取值范围.

分析 (Ⅰ)由题意可得$e=\frac{{\sqrt{2}}}{2}$,c=1,a2=b2+c2,联立解出即可得出.
(Ⅱ)当直线l的斜率为0时,不成立.于是可设直线l的方程为:my=x-1,设A(x1,y1),B(x2,y2),与椭圆方程联立可得:(m2+2)y2+2my-1=0,由|FA|=λ|FB|,可得y1=-λy2,再利用根与系数的关系代入可得:$λ+\frac{1}{λ}$-2=$\frac{4{m}^{2}}{{m}^{2}+2}$,由1≤λ≤2,可得0≤${m^2}≤\frac{2}{7}$,利用AB边上的中线长为$\frac{1}{2}|\overrightarrow{TB}+\overrightarrow{TA}|$=$\frac{1}{2}\sqrt{({x}_{1}+{x}_{2}-4)^{2}+({y}_{1}+{y}_{2})^{2}}$,及其二次函数的单调性即可得出.

解答 解:(Ⅰ)∵$e=\frac{{\sqrt{2}}}{2}$,c=1,a2=b2+c2
∴$a=\sqrt{2},c=1$=b,
∴椭圆C的方程为:$\frac{x^2}{2}+{y^2}=1$.
(Ⅱ)当直线l的斜率为0时,显然不成立.因此可设直线l的方程为:my=x-1,设A(x1,y1),B(x2,y2),
直线l的方程与椭圆方程联立可得:(m2+2)y2+2my-1=0,
∴${y_1}+{y_2}=\frac{-2m}{{{m^2}+2}}$,${y_1}{y_2}=\frac{-1}{{{m^2}+2}}$,
由|FA|=λ|FB|,可得y1=-λy2
∵$-λ+\frac{1}{-λ}=\frac{y_1}{y_2}+\frac{y_2}{y_1}$,
∴$-λ+\frac{1}{-λ}+2=\frac{{{{({y_1}+{y_2})}^2}}}{{{y_1}{y_2}}}=\frac{{-4{m^2}}}{{{m^2}+2}}$,
∴$λ+\frac{1}{λ}$-2=$\frac{4{m}^{2}}{{m}^{2}+2}$,
∵1≤λ≤2,∴$λ+\frac{1}{λ}$∈$[2,\frac{5}{2}]$,
∴0≤${m^2}≤\frac{2}{7}$,
又AB边上的中线长为$\frac{1}{2}|\overrightarrow{TB}+\overrightarrow{TA}|$=$\frac{1}{2}\sqrt{({x}_{1}+{x}_{2}-4)^{2}+({y}_{1}+{y}_{2})^{2}}$=$\sqrt{\frac{4{m}^{4}+9{m}^{2}+4}{({m}^{2}+2)^{2}}}$=$\sqrt{\frac{2}{{{{({m^2}+2)}^2}}}-\frac{7}{{{m^2}+2}}+4}$,
∵0≤${m^2}≤\frac{2}{7}$,∴$\frac{1}{{m}^{2}+2}$=t∈$[\frac{7}{16},\frac{1}{2}]$.
∴f(t)=2t2-7t+4=2$(t-\frac{7}{4})^{2}$-$\frac{17}{8}$∈$[1,\frac{169}{128}]$.
∴$\sqrt{f(t)}$$∈[1,\frac{{13\sqrt{2}}}{16}]$.
∴△ABT中AB边上中线长的取值范围是$[1,\frac{13\sqrt{2}}{16}]$.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、向量数量积运算性质、一元二次方程的根与系数的关系、二次函数的性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知点P为圆C:x2+y2=4上的动点,A(4,0),则线段AP中点M的轨迹方程为(  )
A.(x-2)2+y2=1B.(x+2)2+y2=1C.(x-2)2+y2=4D.x2+(y-2)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图:在三棱锥A-BCD中,P∈AC,Q∈BD,若VA-BPQ=6,VB-CPQ=2,VQ-PCD=8,则三棱锥A-BCD的体积VA-BCD为(  )
A.22B.34C.32D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2.
(1)求a,c,d的值,并求f(x)的极大值;
(2)证明对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x,y∈R+,且满足x+2y=2xy,那么x+4y的最小值为(  )
A.3-$\sqrt{2}$B.3+2$\sqrt{2}$C.3+$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若复数z满足z(1-i)=2,则z=(  )
A.1-iB.1+iC.2-2iD.2+2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)在点x0处取得极值,则必有(  )
A.f′(x0)=0B.f′(x0)<0
C.f′(x0)=0且f″(x0)<0D.f′(x0)或f′(x0)不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2+lnx(a为正实数),且f(x)的导函数f′(x)在x=$\frac{1}{2}$处取极小值.
(1)求实数a的值;
(2)设函数g(x)=3x+x2,若方程f(x)-g(x)+m=0在x∈[$\frac{1}{2}$,2]内恰有两个不相等的实数根,求实数m的取值范围(参考数据:ln2≈0.693);
(3)记函数h(x)=f(x)-$\frac{3}{2}$x2-(b+1)x(b≥$\frac{3}{2}$).设x1,x2(x2>x1>0)是函数h(x)的两个极值点,点A(x1,h(x1)),B(x2,h(x2)),直线AB的斜率为kAB.若kAB≤$\frac{r}{{x}_{1}{-x}_{2}}$对任意x2>x1>0恒成立,求实数r的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn=-3n2+49n.
(1)请问数列{an}是否为等差数列?如果是,请证明;
(2)设bn=|an|,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案