精英家教网 > 高中数学 > 题目详情
18.若复数z满足z(1-i)=2,则z=(  )
A.1-iB.1+iC.2-2iD.2+2i

分析 直接利用复数的除法的运算法则化简求解即可.

解答 解:$z=\frac{2}{1-i}=\frac{2(1+i)}{(1-i)(1+i)}=1+i$,
故选:B.

点评 本题考查复数的代数形式混合运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某学生记忆导数公式如下,其中错误的一个是(  )
A.(${\frac{1}{x}}$)′=-$\frac{1}{x^2}$B.(ax)=axlnaC.(lnx)′=$\frac{1}{x}$D.(sinx)′=-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题中的假命题是(  )
A.?x∈R,lgx=0B.?x∈R,x3>0C.?x∈R,tanx=1D.?x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=xlnx+\frac{3}{2}$.
(I)求函数f(x)的单调区间和极值;
(II)若对定义域内任意的x,$f(x)≥\frac{{-{x^2}+mx}}{2}$恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.过离心率为$\frac{{\sqrt{2}}}{2}$的椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点F(1,0)作直线l与椭圆C交于不同的两点A、B,设|FA|=λ|FB|,T(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若1≤λ≤2,求△ABT中AB边上中线长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{2\sqrt{2}}{3}$,椭圆C的右焦点到直线x=$\frac{a}{e}$的距离为$\frac{\sqrt{2}}{4}$,椭圆C的下顶点为D.
(1)求椭圆C的标准方程;
(2)若过D点作两条相互垂直的直线分别与椭圆C相交于点P,M.求证:直线PM经过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若直线l1:mx+y-1=0,l2:4x+my+m-4=0,则“m=2”是“直线l1⊥l2”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知e=2.71828…,设函数f(x)=$\frac{1}{2}$x2-bx+alnx存在极大值点x0,且对于b的任意可能取值,恒有极大值f(x0)<0,则下列结论中正确的是(  )
A.存在x0=$\sqrt{a}$,使得f(x0)<-$\frac{1}{e}$B.存在x0=$\sqrt{a}$,使得f(x0)>-e
C.a的最大值为e3D.0<a<e3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\frac{2}{x+1}$,点O为坐标原点,点An(n,f(n))(n∈N*),向量$\overrightarrow j=(0,1)$,θn是向量$\overrightarrow{O{A_n}}$与$\overrightarrow j$的夹角,则$\frac{{cos{θ_1}}}{{sin{θ_1}}}+\frac{{cos{θ_2}}}{{sin{θ_2}}}+\frac{{cos{θ_1}}}{{sin{θ_1}}}+…+\frac{{cos{θ_{2016}}}}{{sin{θ_{2016}}}}$=(  )
A.$\frac{2015}{1008}$B.$\frac{2017}{2016}$C.$\frac{2016}{2017}$D.$\frac{4032}{2017}$

查看答案和解析>>

同步练习册答案