精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,椭圆的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求椭圆的极坐标方程和直线的直角坐标方程;

(2)若点的极坐标为,直线与椭圆相交于两点,求的值.

【答案】(1);(2)

【解析】

(1)由椭圆的参数方程消参数可得椭圆的普通方程,再将代入椭圆的普通方程即可求得椭圆的极坐标方程,由即可将直线的极坐标方程化为直角坐标方程,问题得解。

(2)求出点的直角坐标为,即可设直线的参数方程为,联立椭圆方程与直线参数方程,可得:,结合直线参数方程中参数的几何意义可得 ,问题得解。

(1)椭圆的普通方程为

代入整理得:

椭圆的极坐标方程为

得直线的直角坐标方程为:

(2)设点对应的参数分别为

的直角坐标为:,它在直线上.

设直线的参数方程为为参数),

代入,得

化简得,所以

由直线参数方程的几何意义可得:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为为椭圆的左右顶点,为椭圆上不同于.的动点,直线与直线分别交于两点,若,则过三点的圆必过轴上不同于点的定点,其坐标为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为直角梯形,,四边形为矩形,平面平面,点的中点,点的中点.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AC1与底面ABC所成角的余弦值等于( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),在直角梯形中,的中点,四边形为正方形,将沿折起,使点到达点,如图(2),的中点,且,点为线段上的一点.

1)证明:

2)当夹角最小时,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年9月,台风“山竹”在我国多个省市登陆,造成直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的数据分成五组:(单位:元),得到如图所示的频率分布直方图.

(1)试根据频率分布直方图估计该地区每个农户的平均损失(同一组中的数据用该组区间的中点值代表);

(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户并且损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

1)求方程的实数根;

2)设均为正整数,且为最简根式,若存在,使得可唯一表示为的形式,试求椭圆的焦点坐标;

3)已知,是否存在,使得成立,若存在,试求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中

①若空间向量,则的充要条件;

②若的必要不充分条件,则实数的取值范围为

③已知为两个不同平面,为两条直线,,则的充要条件;

④已知向量为平面的法向量,为直线的方向向量,则的充要条件.

其中正确命题的序号有(

A.②③B.②④C.②③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】条件

1)条件:复数,指明的说明条件?若满足条件,记,求

2)若上问中,记时的在平面直角坐标系的点存在过点的抛物线顶点在原点,对称轴为坐标轴,求抛物线的解析式。

3)自(2)中点出发的一束光线经抛物线上一点反射后沿平行于抛物线对称轴方向射出,求:

查看答案和解析>>

同步练习册答案