精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的方程为为椭圆的左右顶点,为椭圆上不同于.的动点,直线与直线分别交于两点,若,则过三点的圆必过轴上不同于点的定点,其坐标为__________.

【答案】

【解析】

利用椭圆的性质首先证明,然后结合题意设出直线方程,由点的坐标确定圆的直径所在的位置,最后由直线垂直的充分必要条件可得点D的坐标.

首先证明椭圆的一个性质:

椭圆,点是椭圆上关于原点对称的两点,是椭圆上异于上的一个点,则.

证明如下:设

由于点是椭圆上的两点,故

两式作差可得:

此时 .

故结论成立.

回到本题,由题意可知:

设直线PA的方程为:,则

设直线PB的方程为:,则

为外接圆的直径,

设所求的点为

则:

,解得:(舍去).

综上可得:所求点的坐标为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018年12月28日,成雅铁路开通运营,使川西多个市县进入动车时代,融入全国高铁网,这对推动沿线经济社会协调健康发展具有重要意义.在试运行期间,铁道部门计划在成都和雅安两城之间开通高速列车,假设每天7:00-8:00,8:00-9:00两个时间段内各发一趟列车由雅安到成都(两车发车情况互不影响),雅安发车时间及其概率如下表所示:

第一趟列车

第二趟列车

发车时间

7:10

7:30

7:50

8:10

8:30

8:50

概率

0.2

0.3

0.5

0.2

0.3

0.5

若小王、小李二人打算乘动车从雅安到成都游玩,假设他们到达雅安火车站候车的时间分别是周六7:00和7:20(只考虑候车时间,不考虑其它因素).

(1)求小王候车10分钟且小李候车30分钟的概率;

(2)设小李候车所需时间为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)过点的直线交椭圆于两点,为椭圆的左焦点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,求的极值;

(2)若有2个不同零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个不透明的箱子中装有大小形状相同的5个小球,其中2个白球标号分别为3个红球标号分别为,现从箱子中随机地一次取出两个球.

(1)求取出的两个球都是白球的概率;

(2)求取出的两个球至少有一个是白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需要看不同类型的书籍,为了合理配备资源,现对小区看书人员进行年龄调查,随机抽取了一天40名读书者进行调查. 将他们的年龄分成6段:

后得到如图所示的频率分布直方图,问:

1)在40名读书者中年龄分布在的人数;

2)估计40名读书者年龄的平均数和中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若处取得极值求函数的单调区间

(Ⅱ)若时函数有两个不同的零点.

的取值范围;②求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中,底面是菱形,.

(1)求证:

(2)若的中点,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求椭圆的极坐标方程和直线的直角坐标方程;

(2)若点的极坐标为,直线与椭圆相交于两点,求的值.

查看答案和解析>>

同步练习册答案