【题目】四棱锥
中,底面
是菱形,
.
![]()
(1)求证:
;
(2)若
是
的中点,求点
到平面
的距离.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P—ABC中,PA=3,PB=PC=
,AB=AC=2,BC=
.
![]()
(1)求二面角B—AP—C大小的余弦值;
(2)求点P到底面ABC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的方程为
,
,
为椭圆
的左右顶点,
为椭圆
上不同于
.
的动点,直线
与直线
,
分别交于
,
两点,若
,则过
,
,
三点的圆必过
轴上不同于点
的定点,其坐标为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥
中,底面ABCD为菱形,
,侧面
为等腰直角三角形,
,
,点E为棱AD的中点.
![]()
(1)求证:
平面ABCD;
(2)求直线AB与平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆
过定点
,且和直线
相切,动圆圆心
形成的轨迹是曲线
,过点
的直线与曲线
交于
两个不同的点.
(1)求曲线
的方程;
(2)在曲线
上是否存在定点
,使得以
为直径的圆恒过点
?若存在,求出
点坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P—ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,N为AD的中点.
![]()
(1)求异面直线PB与CD所成角的余弦值;
(2)点M在线段PC上且满足
,直线MN与平面PBC所成角的正弦值为
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AC1与底面ABC所成角的余弦值等于( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论中
①若空间向量
,
,则
是
的充要条件;
②若
是
的必要不充分条件,则实数
的取值范围为
;
③已知
,
为两个不同平面,
,
为两条直线,
,
,
,
,则“
”是“
”的充要条件;
④已知向量
为平面
的法向量,
为直线
的方向向量,则
是
的充要条件.
其中正确命题的序号有( )
A.②③B.②④C.②③④D.①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com