【题目】四棱锥
中,点
在平面
内的射影
在棱
上,
,底面
是梯形,
,且
.
![]()
(1)求证:平面
平面
;
(2)若直线
与
所成角为60°,求二面角
的余弦值.
【答案】(1)详见解析(2)![]()
【解析】
试题分析:(1)证明面面垂直平面
平面
,就是要证线面垂直
平面
,其实质还是应用线面垂直判定与性质定理,经多次转化给予论证:先由射影定义得
底面
,因而有
,再由
,转化为
平面
(2)利用空间向量求二面角,先根据题意建立空间直角坐标系,设立各点坐标,由直线
与
所成角为60°,利用向量数量积确定各点坐标,最后根据方程组求各面法向量,利用向量数量积求两法向量夹角,进而由二面角与两法向量关系确定二面角的余弦值.
试题解析:(1)∵
平面
平面
,∴
∵
平面
,
∴
平面
,
又
平面
,∴平面
平面
.
(2)![]()
以
为原点,如图建立空间直角坐标系
,∵
平面
,
∴
轴
,
则
,设
,
∴
,∴
,
∵
,∴
,
∵
与
所成角为60°,
∴
,
∴
,∴
,
∵
,∴
,∵
,∴
,∴
∴
,设平面
的法向量为
,
由
,得平面
的一个法向量为
设平面
的法向量为
,
由
,得平面
的一个法向量为
∴
,
∵二面角
的平面角为钝角,
∴二面角
的余弦值为
科目:高中数学 来源: 题型:
【题目】给出定义在
上的两个函数
,
.
(1)若
在
处取最值.求
的值;
(2)若函数
在区间
上单调递减,求实数
的取值范围;
(3)试确定函数
的零点个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C的顶点在x轴上,两顶点间的距离是8,离心率
(1)求双曲线C的标准方程;
(2)过点P(3,0)且斜率为k的直线与双曲线C有且仅有一个公共点,求k的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,已知
在
处的切线
相同.
(1)求
的值及切线
的方程;
(2)设函数
,若存在实数
使得关于
的不等式
对
上的任意实数
恒成立,求
的最小值及对应的
的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆
过定点
,且与直线
相切,椭圆
的对称轴为坐标轴,
点为坐标原点,
是其一个焦点,又点
在椭圆
上.
(1)求动圆圆心
的轨迹
的标准方程和椭圆
的标准方程;
(2)若过
的动直线
交椭圆
于
点,交轨迹
于
两点,设
为
的面积,
为
的面积,令
的面积,令
,试求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】pH值是水溶液的重要理化参数。若溶液中氢离子的浓度为[H
](单位:mol/l),则其pH值为-lg[H
]。在标准温度和气压下,若水溶液pH=7,则溶液为中性,pH<7时为酸性,pH>7时为碱性。例如,甲溶液中氢离子浓度为0.0001mol/l,其pH为-1g 0.0001,即pH=4。已知乙溶液的pH=2,则乙溶液中氢离子浓度为______mol/l。若乙溶液中氢离子浓度是丙溶液的两千万倍,则丙溶液的酸碱性为______(填中性、酸性或碱性)。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com