【题目】已知动圆过定点,且与直线相切,椭圆的对称轴为坐标轴,点为坐标原点,是其一个焦点,又点在椭圆上.
(1)求动圆圆心的轨迹的标准方程和椭圆的标准方程;
(2)若过的动直线交椭圆于点,交轨迹于两点,设为的面积,为的面积,令的面积,令,试求的取值范围.
【答案】(1),(2)
【解析】
试题分析:(1)动圆圆心满足抛物线的定义:,所以方程为,而椭圆标准方程的确定,利用待定系数法:(2)先表示面积:抛物线中三角形面积,利用焦点,底边OF为常数,高为横坐标之差的绝对值,再根据直线方程与抛物线方程联立,利用韦达定理求解;椭圆中三角形面积,利用A点为定点,底边AF为常数,高为横坐标之差的绝对值,再根据直线方程与椭圆方程联立,利用韦达定理求解;研究函数关系式:是一元函数,可根据直线斜率k取值范围求解
试题解析:(1)依题意,由抛物线的定义易得动点的轨迹的标准方程为:
依题意可设椭圆的标准方程为,
显然有,∴,∴椭圆的标准方程为
(2)显然直线的斜率存在,不妨设直线的直线方程为:①
联立椭圆的标准方程,有,
设则有,
再将①式联立抛物线方程,有,设得,∴,
∴,
∴当时,,又,∴
科目:高中数学 来源: 题型:
【题目】已知点, ,点满足,其中, ,且;圆的圆心在轴上,且与点的轨迹相切与点.
(1)求圆的方程;
(2)若点,点是圆上的任意一点,求的取值范围;
(3)过点的两条直线分别与圆交于、两点,若直线、的斜率互为相反数,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的顶点C在直线3x﹣y=0上,顶点A、B的坐标分别为(4,2),(0,5).
(Ⅰ)求过点A且在x,y轴上的截距相等的直线方程;
(Ⅱ)若△ABC的面积为10,求顶点C的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题中:
①函数的一个对称中心为;
②若, 为第一象限角,且,则;
③若,则存在实数,使得;
④点是三角形所在平面内一点,且满足,则点是三角形的内心.
其中正确的序号是__________.(把你认为正确的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题p:关于x的不等式x2+2ax+4>0对于一切x∈R恒成立,命题q:x∈11,2], x2-a≥0,若p∨q为真,p∧q为假,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,以为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知点,和平面内一点(),过点任作直线与椭圆相交于, 两点,设直线, , 的斜率分别为, , , ,试求, 满足的关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com