精英家教网 > 高中数学 > 题目详情

【题目】命题p:关于x的不等式x2+2ax+40对于一切x∈R恒成立,命题q:x∈11,2], x2-a≥0,若p∨q为真,p∧q为假,求实数a的取值范围.

【答案】{a|1<a<2或a≤-2}

【解析】

试题分析:根据二次函数的图象和性质我们可以求出命题p:关于x的不等式x2+2ax+40对于一切xR恒成立时,及命题qx[12]x2-a0时,a的取值范围,根据pq为真,pq为假,结合复合命题的真值表,可得pq一真一假,分类讨论后可得实数a的取值范围

试题解析:设g(x)=x2+2ax+4,由于关于x的不等式x2+2ax+4>0对于一切x∈R恒成立,所以g(x)函数的图象开口向上且与x轴没有交点,故Δ=4a2-16<0,所以-2<a<2.

若q为真命题,a≤x2恒成立,即a≤1.由于p或q为真,p且q为假,可知p、q一真一假.

①若p真q假,则所以1<a<2;

②若p假q真,则所以a≤-2;

综上可知,所求实数a的取值范围是{a|1<a<2或a≤-2}

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C 的圆心为C

(Ⅰ)在中,求边上的高CD所在的直线方程;

(Ⅱ)求与圆C相切且在两坐标轴上的截距相等的直线方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C的顶点在x轴上,两顶点间的距离是8,离心率

1)求双曲线C的标准方程;

2)过点P30)且斜率为k的直线与双曲线C有且仅有一个公共点,求k的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且与直线相切,椭圆的对称轴为坐标轴,点为坐标原点,是其一个焦点,又点在椭圆上.

(1)求动圆圆心的轨迹的标准方程和椭圆的标准方程;

(2)若过的动直线交椭圆点,交轨迹两点,设的面积,的面积,令的面积,令,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设点F1(-c,0)、F2(c,0)分别是椭圆C:左、右焦点,P为椭圆C上任意一点,且最小值为0.

求椭圆C的方程;

若动直线l1,l2均与椭圆C相切,且l1l2,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,请求出B坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数有相同极值点.

1求函数的最大值;

2求实数的值;

3,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知五边形由直角梯形与直角构成,如图1所示,,且,将梯形沿着折起,形成如图2所示的几何体,且使平面平面

1在线段上存在点,且,证明:平面

2求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C的对边分别为a,b,c,若c=2,sinB=2sinA.

(1)若C=,求a,b的值;

(2)若cosC=,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有6名奥运会志愿者,其中志愿者通晓日语, 通晓俄语, 通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.

(1)求被选中的概率;

(2)求不全被选中的概率;

(3)若6名奥运会志愿者每小时派两人值班,现有两名只会日语的运动员到来,求恰好遇到的概率.

查看答案和解析>>

同步练习册答案