精英家教网 > 高中数学 > 题目详情

【题目】如图,在五面体中,.

1)证明:平面

2)若,求二面角的余弦值.

【答案】1)证明见解析;(2.

【解析】

(1)根据平行的传递性可得,再取中点为,连接,进而可得四边形为平行四边形,再根据勾股定理证明,进而得到平面.

(2) 以点为坐标原点,分别以的方向为轴、轴的正方向,建立空间直角坐标系,再分别求解平面的法向量与平面的法向量,进而求得二面角的余弦值即可.

1)证明:因为,,

所以.

中点为,连接,所以,

因为,,所以,

所以四边形为平行四边形,所以,且.

因为,,

所以,所以,

因为,所以.

因为,所以平面.

2)由(1)知,平面,

因为,所以平面.

故以点为坐标原点,分别以的方向为轴、

轴的正方向,建立如图所示的空间直角坐标系.

所以

所以,

设平面的法向量为,

,

所以,

,则,

设平面的法向量为,因为,

所以,

所以,

,则,

所以,

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】光伏发电是利用太阳能电池及相关设备将太阳光能直接转化为电能.近几年在国内出台的光伏发电补贴政策的引导下,某地光伏发电装机量急剧上涨,如下表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代码

1

2

3

4

5

6

7

8

新增光伏装机量兆瓦

0.4

0.8

1.6

3.1

5.1

7.1

9.7

12.2

某位同学分别用两种模型:①,②进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差等于):

经过计算得,其中.

1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由.

2)根据(1)的判断结果及表中数据建立关于的回归方程,并预测该地区2020年新增光伏装机量是多少.(在计算回归系数时精确到0.01

附:回归直线的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,分别是的中点,则(

A. B. C. 平面 D. 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)求函数的零点和极值;

(3)若对任意,都有成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)若,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(多选题)下列说法正确的是(

A.在回归直线方程中,当解释变量每增加1个单位时,预报变量平均减少2.3个单位

B.两个具有线性相关关系的变量,当相关指数的值越接近于0,则这两个变量的相关性就越强

C.若两个变量的相关指数,则说明预报变量的差异有88%是由解释变量引起的

D.在回归直线方程中,相对于样本点的残差为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F1为椭圆的左焦点,在椭圆上,PF1x轴.

1)求椭圆的方程:

2)已知直线l与椭圆交于AB两点,且坐标原点O到直线l的距离为的大小是否为定值?若是,求出该定值:若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位年会进行抽奖活动,在抽奖箱里装有张印有“一等奖”的卡片, 张印

有“二等奖”的卡片, 3张印有“新年快乐”的卡片,抽中“一等奖”获奖元, 抽中“二等奖”获奖元,抽中“新年快乐”无奖金.

(1)单位员工小张参加抽奖活动,每次随机抽取一张卡片,抽取后不放回.假如小张一定要将所有获奖卡片全部抽完才停止. 记表示“小张恰好抽奖次停止活动”,求的值;

(2)若单位员工小王参加抽奖活动,一次随机抽取张卡片.

表示“小王参加抽奖活动中奖”,求的值;

②设表示“小王参加抽奖活动所获奖金数(单位:元)”,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在统计学中,同比增长率一般是指和去年同期相比较的增长率,环比增长率一般是指和前一时期相比较的增长率.2020229日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据2019年居民消费价格月度涨跌幅度统计折线图,下列说法正确的是( )

A.2019年我国居民每月消费价格与2018年同期相比有涨有跌

B.2019年我国居民每月消费价格中2月消费价格最高

C.2019年我国居民每月消费价格逐月递增

D.2019年我国居民每月消费价格3月份较2月份有所下降

查看答案和解析>>

同步练习册答案