精英家教网 > 高中数学 > 题目详情
对于函数f(x),若在定义域存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(1)已知二次函数f(x)=ax2+2bx-4a(a,b∈R),试判断f(x)是否为“局部奇函数”?并说明理由;
(2)设f(x)=2x+m是定义在[-1,1]上的“局部奇函数”,求实数m的取值范围.
考点:函数奇偶性的判断
专题:新定义
分析:(1)根据“局部奇函数”的定义,只要判断条件f(-x)=-f(x)是否成立即可得到结论.
(2)根据“局部奇函数”的定义,解方程f(-x)=-f(x),即可得到结论.
解答: 解:(1)f(x)为“局部奇函数”等价于关于x的方程f(-x)+f(x)=0有解.
即f(x)+f(-x)=0⇒2a(x2-4)=0,
有解x=±2,∴f(x)为“局部奇函数”.
(2)当f(x)=2x+m时,f(x)+f(-x)=0可转化为2x+2-x+2m=0,
∵f(x)的定义域为[-1,1],
∴方程2x+2-x+2m=0在[-1,1]上有解,
t=2x∈[
1
2
,2]

-2m=t+
1
t

g(t)=t+
1
t
在(0,1)上递减,在(1,+∞)上递增,
g(t)∈[2,
5
2
]

-2m∈[2,
5
2
]

m∈[-
5
4
,-1]
点评:本题主要考查新定义的应用,利用新定义,建立方程关系,然后利用函数性质进行求解是解决本题的关键,考查学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定点A(4,0),圆C:x2+y2=4上有一动点P,设M为线段AP上一点,且满足
AM
=2
MP
,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Γ:
x2
a2
+
y2
b2
=1(a>b>0)的焦距为4,且椭圆Γ过点A(2,
2
).
(1)求椭圆Γ的方程;
(2)设P、Q为椭圆Γ上关于y轴对称的两个不同的动点,求
AP
AQ
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≥
π
2
,x∈R)的最大值是3,其相邻两条对称轴间的距离为
π
2

(1)求f(x)的表达式;
(2)求函数y=f(x)+
3
sin2x的最大值,并求出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α)=
sin(α-3π)cos(2π-α)sin(-α+
2
)
cos(-π-α)sin(-π-α)

(1)化简f(α);
(2)若α=-
31π
3
,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a是实数,函数f(x)=4x+|2x-a|(x∈R).
(1)求证:函数f(x)不是奇函数;
(2)当a≤0时,求满足f(x)>a2的x的取值范围;
(3)求函数y=f(x)的值域(用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

n个人互相传球,由甲开始发球,经过m次传球后,球仍回到甲的手中,一共有多少种传法?(m≥2,n≥3).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(x,sinx),
b
=(ex,0),若f(x)=
a
b
,则f(x)在x=1处的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

三个数a=log0.36,b=0.36,c=0.28,则其大小关系是
 

查看答案和解析>>

同步练习册答案