精英家教网 > 高中数学 > 题目详情

【题目】已知点列An(an , bn)(n∈N*)均为函数y=ax(a>0,a≠1)的图象上,点列Bn(n,0)满足|AnBn|=|AnBn+1|,若数列{bn}中任意连续三项能构成三角形的三边,则a的取值范围为( )
A.(0, )∪( ,+∞)
B.( ,1)∪(1,
C.(0, )∪( ,+∞)
D.( ,1)∪(1,

【答案】B
【解析】解:由题意得,点Bn(n,0),An(an , bn)满足|AnBn|=|AnBn+1|,
由中点坐标公式,可得BnBn+1的中点为(n+ ,0),
即an=n+ ,bn=
当a>1时,以bn1 , bn , bn+1为边长能构成一个三角形,
只需bn1+bn+1>bn
bn1<bn<bn+1
+
即有1+a2<a,
解得1<a<
同理,0<a<1时,解得 <a<1;
综上,a的取值范围是1<a< <a<1,
故选:B.
【考点精析】掌握指数函数的图像与性质是解答本题的根本,需要知道a0=1, 即x=0时,y=1,图象都经过(0,1)点;ax=a,即x=1时,y等于底数a;在0<a<1时:x<0时,ax>1,x>0时,0<ax<1;在a>1时:x<0时,0<ax<1,x>0时,ax>1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以下说法正确的有( )
(1)y=x+ (x∈R)最小值为2;
(2)a2+b2≥2ab对a,b∈R恒成立;
(3)a>b>0且c>d>0,则必有ac>bd;
(4)命题“x∈R,使得x2+x+1≥0”的否定是“x∈R,使得x2+x+1≥0”;
(5)实数x>y是 成立的充要条件;
(6)设p,q为简单命题,若“p∨q”为假命题,则“¬p∨¬q”也为假命题.
A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x﹣a|的定义域为D,其中a为常数;
(1)若D=R,且f(x)是奇函数,求a的值;
(2)若a≤﹣1,D=[﹣1,0],函数f(x)的最小值是g(a),求g(a)的最大值;
(3)若a>0,在[0,3]上存在n个点xi(i=1,2,…,n,n≥3),满足x1=0,xn=3,x1<x2<…<xn , 使|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xn1)﹣f(xn)|= ,求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a1=a(a∈R),an+1= ,n∈N*
(1)若0<an≤6,求证:0<an+1≤6;
(2)若a=5,求S2016
(3)若a= (m∈N*),求S4m+2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是函数的反函数,函数的图像关于直线对称,记.

1)求函数的解析式和定义域﹔

2)在的图像上是否存在这样两个不同点AB,使直线AB恰好与y轴垂直?若存在,求AB的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=lganb3=18,b6=12,则数列{bn}的前n项和的最大值等于(  )

A. 126 B. 130 C. 132 D. 134

【答案】C

【解析】

由题意可知,lga3=b3,lga6=b6再由b3,b6,用a1q表示出a3b6,进而求得qa1,根据{an}为正项等比数列推知{bn}为等差数列,进而得出数列bn的通项公式和前n项和,可知Sn的表达式为一元二次函数,根据其单调性进而求得Sn的最大值.

由题意可知,lga3=b3,lga6=b6

∵b3=18,b6=12,则a1q2=1018,a1q5=1012

∴q3=10﹣6

q=10﹣2,∴a1=1022

∵{an}为正项等比数列,

∴{bn}为等差数列,

d=﹣2,b1=22.

bn=22+(n﹣1)×(﹣2)=﹣2n+24.

∴Sn=22n+×(﹣2)

=﹣n2+23n=∵nN*,故n=1112时,(Snmax=132.

故答案为:C.

【点睛】

这个题目考查的是等比数列的性质和应用;解决等差等比数列的小题时,常见的思路是可以化基本量,解方程;利用等差等比数列的性质解决题目;还有就是如果题目中涉及到的项较多时,可以观察项和项之间的脚码间的关系,也可以通过这个发现规律。

型】单选题
束】
12

【题目】已知数列是递增数列,且对,都有,则实数的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M是满足下列性制的函数f(x)的全体,存在实数a、k(k≠0),对于定义域内的任意x均有f(a+x)=kf(a﹣x)成立,称数对(a,k)为函数f(x)的“伴随数对”.
(1)判断f(x)=x2是否属于集合M,并说明理由;
(2)若函数f(x)=sinx∈M,求满足条件的函数f(x)的所有“伴随数对”;
(3)若(1,1),(2,﹣1)都是函数f(x)的“伴随数对”,当1≤x<2时,f(x)=cos( x);当x=2时,f(x)=0,求当2014≤x≤2016时,函数y=f(x)的解析式和零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,其中a,b,c∈R.
(1)若a=b=c=1,求f(x)的单调区间;
(2)若b=c=1,且当x≥0时,f(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinx,1), = ,函数f(x)= 的最大值为6.
(1)求A;
(2)将函数f(x)的图象向左平移 个单位,再将所得图象上各点的横坐标缩短为原来的 倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0, ]上的值域.

查看答案和解析>>

同步练习册答案