精英家教网 > 高中数学 > 题目详情

【题目】以下说法正确的有( )
(1)y=x+ (x∈R)最小值为2;
(2)a2+b2≥2ab对a,b∈R恒成立;
(3)a>b>0且c>d>0,则必有ac>bd;
(4)命题“x∈R,使得x2+x+1≥0”的否定是“x∈R,使得x2+x+1≥0”;
(5)实数x>y是 成立的充要条件;
(6)设p,q为简单命题,若“p∨q”为假命题,则“¬p∨¬q”也为假命题.
A.2个
B.3个
C.4个
D.5个

【答案】A
【解析】解:(1)当x<0时函数 ,无最小值,故(1)错误;(2)∵a2+b2﹣2ab=(a﹣b)2≥0对任意实数a,b都成立,∴a2+b2≥2ab对任意实数a,b恒成立,故(2)正确;(3)根据不等式的性质易知(3)正确;(4)根据特称命题的否定形式知,命题“x∈R,使得x2+x+1≥0”的否定应为“x∈R,x2+x+1<0”,故(4)错误;(5)取x=1,y=﹣1满足x>y,但 ,故(5)错误;(6)若p∨q为假命题,则p,q都为假命题,所以¬p,¬q都为真命题,所以¬p∨¬q为真命题,故(6)错误.
综上可得正确命题为(2)(3).
故选A.
【考点精析】解答此题的关键在于理解复合命题的真假的相关知识,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真,以及对命题的真假判断与应用的理解,了解两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.

月收入(单位百元)

[15,25

[25,35

[35,45

[45,55

[55,65

[65,75

频数

5

10

15

10

5

5

赞成人数

4

8

12

5

2

1

(1)由以上统计数据求下面22列联表中的的值,并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;

月收入低于55百元的人数

月收入不低于55百元的人数

合计

赞成

a

b

不赞成

c

d

合计

50

(2)若对在[55,65)内的被调查者中随机选取两人进行追踪调查,记选中的2人中不赞成“楼市限购令”的人数为,求的概率.

附:

0.10

0.05

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且3cosBcosC+1=3sinBsinC+cos2A.
(1)求角A的大小;
(2)若 ,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点F,C上一点到焦点的距离为5.

(1)求C的方程;

(2)过F作直线l,交CA,B两点,若直线AB中点的纵坐标为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点F,C上一点到焦点的距离为5.

(1)求C的方程;

(2)过F作直线l,交CA,B两点,若直线AB中点的纵坐标为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣a(x﹣1),其中a>0.
(Ⅰ)若函数f(x)在(0,+∞)上有极大值0,求a的值;(提示:当且仅当x=1时,lnx=x﹣1);
(Ⅱ)令F(x)=f(x)+a(x﹣1)+ (0<x≤3),其图象上任意一点P(x0 , y0)处切线的斜率k≤ 恒成立,求实数a的取值范围;
(Ⅲ)讨论并求出函数f(x)在区间 上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义在(﹣44)上的奇函数,满足f2)=1,当﹣4x≤0时,有fx)=

1)求实数ab的值;

2)若fm+1+>0.求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣mx(m∈R).
(1)若曲线y=f(x)过点P(1,﹣1),求曲线y=f(x)在点P处的切线方程;
(2)求函数f(x)在区间[1,e]上的最大值;
(3)若函数f(x)有两个不同的零点x1 , x2 , 求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点列An(an , bn)(n∈N*)均为函数y=ax(a>0,a≠1)的图象上,点列Bn(n,0)满足|AnBn|=|AnBn+1|,若数列{bn}中任意连续三项能构成三角形的三边,则a的取值范围为( )
A.(0, )∪( ,+∞)
B.( ,1)∪(1,
C.(0, )∪( ,+∞)
D.( ,1)∪(1,

查看答案和解析>>

同步练习册答案