精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx﹣a(x﹣1),其中a>0.
(Ⅰ)若函数f(x)在(0,+∞)上有极大值0,求a的值;(提示:当且仅当x=1时,lnx=x﹣1);
(Ⅱ)令F(x)=f(x)+a(x﹣1)+ (0<x≤3),其图象上任意一点P(x0 , y0)处切线的斜率k≤ 恒成立,求实数a的取值范围;
(Ⅲ)讨论并求出函数f(x)在区间 上的最大值.

【答案】解:(Ⅰ)
当x∈ 时,f'(x)>0,当x∈ 时,f'(x)<0
故函数f(x)在 上单调递增,在 上单调递减,
因此函数f(x)在 (0,+∞)上有极大值
∴lna=a﹣1,解得a=1
(Ⅱ) ,于是有 在(0,3]上恒成立,所以 ,当x0=1时, 取最大值 ,所以
(Ⅲ)∵
①若 ,即 ,则当 时,有f'(x)≥0,∴函数f(x)在 上单调递增,则f(x)max=f(e)=1﹣ea+a.
②若 ,即 ,则函数f (x)在 上单调递增,在 上单调递减,∴
③若 ,即a≥e,则当 时,有f'(x)≤0,函数f (x)在 上单调递减,则
综上得,当 时,f(x)max=1﹣ea+a;当 时,f(x)max=﹣lna﹣1+a;当a≥e时,
【解析】(Ⅰ)求f(x)的导数,讨论导数的正负,可得f(x)的单调区间,利用函数f(x)在(0,+∞)上有极大值0,即可求a的值;
(Ⅱ)切线的斜率即为函数在切点处的导数,让f′(x0)≤ 恒成立即可,再由不等式恒成立时所取的条件得到实数a范围,即得实数a的最小值.
(Ⅲ)分类讨论,利用函数的单调性,结合函数的定义域,求出函数f(x)在区间[ ,e]上的最大值.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点满足,且点的坐标为.

(1)求过点的直线的方程;

(2)试用数学归纳法证明:对于,点都在(1)中的直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数:f(x)=﹣x3﹣3x2+(1+a)x+b(a<0,b∈R).
(1)令h(x)=f(x﹣1)﹣b+a+3,判断h(x)的奇偶性,并讨论h(x)的单调性;
(2)若g(x)=|f(x)|,设M(a,b)为g(x)在[﹣2,0]的最大值,求M(a,b)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直棱柱ABC-中,DE分别是ABBB1的中点,=AC=CB=AB.

)证明://平面

)求二面角D--E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下说法正确的有( )
(1)y=x+ (x∈R)最小值为2;
(2)a2+b2≥2ab对a,b∈R恒成立;
(3)a>b>0且c>d>0,则必有ac>bd;
(4)命题“x∈R,使得x2+x+1≥0”的否定是“x∈R,使得x2+x+1≥0”;
(5)实数x>y是 成立的充要条件;
(6)设p,q为简单命题,若“p∨q”为假命题,则“¬p∨¬q”也为假命题.
A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x2+2 f(x)dx,则 f(x)dx=(
A.﹣1
B.﹣
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)求第3,4,5组的频率;

(2)为了了解最优秀学生的情况,该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x),y=g(x)的值域均为R,有以下命题:
①若对于任意x∈R都有f[f(x)]=f(x)成立,则f(x)=x.
②若对于任意x∈R都有f[f(x)]=x成立,则f(x)=x.
③若存在唯一的实数a,使得f[g(a)]=a成立,且对于任意x∈R都有g[f(x)]=x2﹣x+1成立,则存在唯一实数x0 , 使得g(ax0)=1,f(x0)=a.
④若存在实数x0 , y0 , f[g(x0)]=x0 , 且g(x0)=g(y0),则x0=y0
其中是真命题的序号是 . (写出所有满足条件的命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=lganb3=18,b6=12,则数列{bn}的前n项和的最大值等于(  )

A. 126 B. 130 C. 132 D. 134

【答案】C

【解析】

由题意可知,lga3=b3,lga6=b6再由b3,b6,用a1q表示出a3b6,进而求得qa1,根据{an}为正项等比数列推知{bn}为等差数列,进而得出数列bn的通项公式和前n项和,可知Sn的表达式为一元二次函数,根据其单调性进而求得Sn的最大值.

由题意可知,lga3=b3,lga6=b6

∵b3=18,b6=12,则a1q2=1018,a1q5=1012

∴q3=10﹣6

q=10﹣2,∴a1=1022

∵{an}为正项等比数列,

∴{bn}为等差数列,

d=﹣2,b1=22.

bn=22+(n﹣1)×(﹣2)=﹣2n+24.

∴Sn=22n+×(﹣2)

=﹣n2+23n=∵nN*,故n=1112时,(Snmax=132.

故答案为:C.

【点睛】

这个题目考查的是等比数列的性质和应用;解决等差等比数列的小题时,常见的思路是可以化基本量,解方程;利用等差等比数列的性质解决题目;还有就是如果题目中涉及到的项较多时,可以观察项和项之间的脚码间的关系,也可以通过这个发现规律。

型】单选题
束】
12

【题目】已知数列是递增数列,且对,都有,则实数的取值范围是

A. B. C. D.

查看答案和解析>>

同步练习册答案