精英家教网 > 高中数学 > 题目详情

【题目】某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)求第3,4,5组的频率;

(2)为了了解最优秀学生的情况,该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试.

【答案】(1)依次为; (2)依次为3人,2人,1人.

【解析】

(1)求第3个,第4个,第5个矩形的面积即得第3,4,5组的频率.(2)利用分层抽样的定义求第3,4,5组每组各抽取多少名学生进入第二轮面试.

(1)由题设可知,第3组的频率为,第4组的频率为

第5组的频率为

(2)第3组的人数为0.3×100=30,第4组的人数为0.2×100=20,第5组的人数为0.1×100=10.

因为第3,4,5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组抽取 的人数分别为:第3组:×6=3,第4组:×6=2,第5组:×6=1,所以第3,4,5组分别抽取3人,2人,1人

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1的左顶点为A(﹣3,0),左焦点恰为圆x2+2x+y2+m=0(m∈R)的圆心M.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点A且与圆M相切于点B的直线,交椭圆C于点P,P与椭圆C右焦点的连线交椭圆于Q,若三点B,M,Q共线,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点F,C上一点到焦点的距离为5.

(1)求C的方程;

(2)过F作直线l,交CA,B两点,若直线AB中点的纵坐标为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣a(x﹣1),其中a>0.
(Ⅰ)若函数f(x)在(0,+∞)上有极大值0,求a的值;(提示:当且仅当x=1时,lnx=x﹣1);
(Ⅱ)令F(x)=f(x)+a(x﹣1)+ (0<x≤3),其图象上任意一点P(x0 , y0)处切线的斜率k≤ 恒成立,求实数a的取值范围;
(Ⅲ)讨论并求出函数f(x)在区间 上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义在(﹣44)上的奇函数,满足f2)=1,当﹣4x≤0时,有fx)=

1)求实数ab的值;

2)若fm+1+>0.求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB.
(Ⅰ)求证:AB⊥DE;
(Ⅱ)求直线EC与平面ABE所成角的正弦值;
(Ⅲ)线段EA上是否存在点F,使EC∥平面FBD?若存在,求出 ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣mx(m∈R).
(1)若曲线y=f(x)过点P(1,﹣1),求曲线y=f(x)在点P处的切线方程;
(2)求函数f(x)在区间[1,e]上的最大值;
(3)若函数f(x)有两个不同的零点x1 , x2 , 求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC30°BM⊥ACAC 于点 MEA⊥平面ABCFC//EAAC4EA3FC1

1)证明:EM⊥BF

2)求平面 BEF 与平面ABC 所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x+2 sin(x+ )cos(x﹣ )﹣cos2x﹣
(1)求函数f(x)的单调递减区间;
(2)求函数f(x)在[﹣ π]上的最大值.

查看答案和解析>>

同步练习册答案