【题目】某化工厂生产的某种化工产品,当年产量在150吨至250吨之间,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可近似地表示为
问:
(1)年产量为多少吨时,每吨的平均成本最低?并求出最低成本?
(2)若每吨平均出厂价为16万元,则年产量为多少吨时,可获得最大利润?并求出最大利润?
科目:高中数学 来源: 题型:
【题目】已知函数(为常数, 是自然对数的底数),曲线在点处的切线与轴平行.
(1)求的值;
(2)求的单调区间;
(3)设,其中为的导函数.证明:对任意, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知中心在原点,离心率为的椭圆的一个焦点为圆: 的圆心.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆上一点,过作两条斜率之积为的直线, ,当直线, 都与圆相切时,求的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了估计某校的一次数学考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在[40,100)上,将这些成绩分成六段[40,50),[50,60)…[90,100),后得到如图所示部分频率分布直方图.
(1)求抽出的60名学生中分数在[70,80)内的人数;
(2)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校优秀人数.
(3)根据频率分布直方图算出样本数据的中位数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,且的离心率为.
(1)求的方程;
(2)过的顶点作两条互相垂直的直线与椭圆分别相交于两点.若的角平分线方程为,求的面积及直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x2﹣2|x|﹣1(﹣3≤x≤3),
(1)画出这个函数的图象;
(2)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数;
(3)求函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)满足:对任意的x1 , x2∈R(x1≠x2),有 <0,则( )
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com