精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2|x-2|+ax(x∈R)有最小值,求实数a的取值范围.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:首先去掉绝对值,再讨论函数的增减性,根据增减性求出a的取值范围.
解答: 解:∵f(x)=2|x-2|+ax=
(2+a)x-4 , x≥2
(a-2)x+4  ,x<2
  有最小值,
∴结合函数的解析式可得函数应在(-∞,2)上是减函数,在[2,+∞)上为增函数或常数函数.
故有 a-2≤0,且a+2≥0,解得-2≤a≤2,
故要求的实数a的取值范围[-2,2].
点评:本题主要考查了函数的单调性和最值问题,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等差数列{an}中,a3=-4,a7=4,公差为d;在等比数列{bn}中,b3=
1
3
,b6=9,公比为q,求d和q.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex-ax-1
(1)求f(x)的单调增区间;
(2)若f(x)在[0,+∞)内单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=xsinx+cosx(-3π<x<3π)
(1)求函数的单调区间;
(2)求函数y=f(x)在区间(-3π,3π)上的极值之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x-(x+1)ln(x+1),
(1)求f(x)的单调区间;
(2)若方程f(x)=t在[-
1
2
,1]上有两个实数解,求实数t的取值范围;
(3)是否存在实数m∈[0,
1
2
],使曲线y=f′(x)与曲线y=ln(x+
1
6
)及直线x=m所围图形的面积S为1+
2
3
ln2-ln3,若存在,求出一个m的值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

为研究高中生在高一数学成绩与高二数学成绩之间的相关关系,随机调查了某班级4名同学的高一所有数学考试平均成绩x和高二所有数学考试平均成绩y如下表所示.(满分5分制)
1号学生 2号学生 3号学生 4号学生
X 3 3.5 3.5 4
y 2.5 3 4 4.5
(1)在给定的坐标系中画出表中数据的散点图;

(2)观察你所画出的散点图,直观判断y与x是否具有线性相关关系,若具有线性相关关系,求出回归直线方程.
(注:回归方程为
y
=
b
x+
a
,其中
b
=
n
i-1
(xi-
.
x
)(yi-
.
y
)
n
i-1
(xi-
.
x
)2
=
 
 
n
i-1
xiyi -n
.
x
.
y
 
 
n
i-1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,动点P(ρ,θ)运动时,ρ与sin2(
θ
2
+
π
4
)成反比,动点P的轨迹经过点(2,0).
(1)求动点P的轨迹的坐标方程;
(2)将(1)中极坐标方程化为直角坐标方程,并指出轨迹是何种曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等比数列,且3a1,2a2,a3成等差数列.
(1)若a2011=2011,试求a2013的值;
(2)若a1=3,公比q≠1,设bn=
1
lnan•lnan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线f(x)=x3+x2+1在点(1,f(1))处的切线方程为
 

查看答案和解析>>

同步练习册答案