| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
分析 (Ⅰ)由题意求出$\overline{x}$,$\overline{y}$,$\sum_{i=1}^{5}{x}_{i}^{2}$,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$,代入公式求值,从而得到回归直线方程;
(Ⅱ)代入x=10即可.
解答 解:(Ⅰ)由题中数据计算得:$\overline{x}$=$\frac{1}{5}$(2+4+5+6+8)=5;
$\overline{y}$=$\frac{1}{5}$(30+40+50+60+70)=50;
$\sum_{i=1}^{5}{x}_{i}^{2}$=22+42+52+62+82=145;
$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=1380;
$\sum_{i=1}^{5}$xi2=145
∴$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$=$\frac{1380-5×5×50}{145-5×{5}^{2}}=65$
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=50-65×5=175;
故回归直线方程为$\widehat{y}$=65x+175.
(Ⅱ)x=10时,预报y的值为y=65×10+175=.
∴预测宣传费支出为10万元时,销售额为825万元.
点评 本题考查了线性回归方程的求法及应用,属于基础题.
科目:高中数学 来源: 题型:解答题
| 积极参加班级工作 | 不太主动参加班级工作 | 合计 | |
| 学习积极性一般 | 6 | 19 | 25 |
| 合计 | 24 | 26 | 50 |
| P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{6}{25}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com