精英家教网 > 高中数学 > 题目详情
已知关于x的不等式ax2-ax+2>0在R上恒成立,则实数a的取值范围是
0≤a<8
0≤a<8
分析:先对a进行讨论,当a=0时,不等式为2>0,恒成立.当a≠0时,利用不等式恒成立的条件进行转化,然后求解.
解答:解:①若a=0,则原不等式等价为2>0,此时不等式恒成立,所以a=0.
②若a≠0,则要使不等式ax2-ax+2>0恒成立,
则有
a>0
△<0
,即
a>0
△=a2-8a<0
,所以
a>0
0<a<8
,解得 0<a<8.
综上满足不等式ax2-ax+2>0在R上恒成立的实数a的取值范围0≤a<8.
故答案为:0≤a<8.
点评:本题主要考查了不等式恒成立问题.对于在R上一元二次不等式恒成立的问题,要转化为抛物线开口方向和判别式来判断.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的不等式
a-xx+1
≥0
的解集为P,不等式|x-1|<1的解集为Q.
(1)若a=3,求P;
(2)若P∪Q=P,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式
a(x+1)x-2
<2的解集为A,且5∉A,
(1)求实数a的取值范围;
(2)求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式
a(x-1)x-2
>2的解集为A,且3∉A
(1)求a范围;
(2)求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式
(a+1)x-3x-1
<1

(Ⅰ)当a=1时,解该不等式;
(Ⅱ)当a>0时,解该不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
设函数f(x)=|2x+1|-|x-3|.
(1)解不等式f(x)>0;
(2)已知关于x的不等式a+3<f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案