分析 函数f(x)可化为t+$\frac{tsinx+x}{2{x}^{2}+cosx}$,令g(x)=$\frac{tsinx+x}{2{x}^{2}+cosx}$,则g(-x)=-g(x),设g(x)的最大值为M,最小值为N,则M+N=0,由f(x)的最大值和最小值,解方程即可得到t=1008.
解答 解:函数f(x)=$\frac{2t{x}^{2}+\sqrt{2}tsin(x+\frac{π}{4})+x}{2{x}^{2}+cosx}$(t≠0)
=$\frac{2t{x}^{2}+\sqrt{2}t(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx)+x}{2{x}^{2}+cosx}$=$\frac{t(2{x}^{2}+cosx)+(tsinx+x)}{2{x}^{2}+cosx}$
=t+$\frac{tsinx+x}{2{x}^{2}+cosx}$,
令g(x)=$\frac{tsinx+x}{2{x}^{2}+cosx}$,则g(-x)=$\frac{-tsinx-x}{2{x}^{2}+cosx}$=-g(x),
设g(x)的最大值为M,最小值为N,
则M+N=0,
即有t+M=a,t+N=b,
a+b=2t+M+N=2t=2016,
解得t=1008.
故答案为:1008.
点评 本题考查函数的奇偶性及运用,考查三角函数的诱导公式和运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{5}$ | B. | -$\frac{\sqrt{5}}{5}$ | C. | $\frac{1}{5}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,2] | B. | [-1,+∞) | C. | [2,+∞) | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{4+\sqrt{2}}{8}$ | B. | -$\frac{4-\sqrt{2}}{8}$ | C. | -$\frac{4-\sqrt{2}}{6}$ | D. | -$\frac{4+\sqrt{2}}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com