精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,已知Sn+1=pSn+q(p,q为常数,n∈N*),如果:a1=2,a2=1,a3=q-3p.
(1)求p,q的值;
(2)求数列{an}的通项公式;
(3)是否存在正整数m,n,使
Sn-m
Sn+1-m
2m
2m+1
成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,说明理由.
(1)由题意,知
S2=pa1+q
S2=pS2+q
3=2p+q
3+q-3p=3p+q
,解之得
p=
1
2
q=2
…(4分)
(2)由(1)知,Sn+1=
1
2
Sn+2,①
当n≥2时,Sn=
1
2
Sn-1+2,②
①-②得,an+1=
1
2
an(n≥2),…(6分)
又a2=
1
2
a1,所以数列{an}是首项为2,公比为
1
2
的等比数列,
所以an=
1
2n-2
.…(8分)
(3)由(2)得,Sn=
2(1-
1
2n
)
1-
1
2
=4(1-
1
2n
)

Sn-m
Sn+1-m
2m
2m+1
,得
4(1-
1
2n
)-m
4(1-
1
2n+1
)-m
2m
2m+1
,即
2n(4-m)-4
2n(4-m)-2
2m
2m+1
,…(10分)
2
2n(4-m)-2
1
2m+1

因为2m+1>0,所以2n(4-m)>2,
所以m<4,且2<2n(4-m)<2m+1+4,①
因为m∈N*,所以m=1或2或3.…(12分)
当m=1时,由①得,2<2n×3<8,所以n=1;
当m=2时,由①得,2<2n×2<12,所以n=1或2;
当m=3时,由①得,2<2n<20,所以n=2或3或4,
综上可知,存在符合条件的所有有序实数对(m,n)为:(1,1),(2,1),(2,2),(3,2),(3,3),(3,4).…(16分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案