精英家教网 > 高中数学 > 题目详情
如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出.设箱体的长度为a米,高度为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60平方米.问当a,b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计).

【答案】分析:先将实际问题转化成数学中的函数的最值问题,再利用基本不等式求.
解答:解法一:设y为流出的水中杂质的质量分数,
则y=,其中k>0为比例系数.依题意,即所求的a,b值使y值最小.
根据题设,有4b+2ab+2a=60(a>0,b>0),
得b=(0<a<30).①
于是y=
===
=
当a+2=时取等号,y达到最小值.
这时a=6,a=-10(舍去).
将a=6代入①式得b=3.
故当a为6米,b为3米时,经沉淀后流出的水中该杂质的质量分数最小.

解法二:依题意,即所求的a,b的值使ab最大.
由题设知4b+2ab+2a=60(a>0,b>0),
即a+2b+ab=30(a>0,b>0).
因为a+2b≥2
所以+ab≤30,
当且仅当a=2b时,上式取等号.
由a>0,b>0,解得0<ab≤18.
即当a=2b时,ab取得最大值,其最大值为18.
所以2b2=18.解得b=3,a=6.
故当a为6米,b为3米时,经沉淀后流出的水中该杂质的质量分数最小.
点评:本小题主要考查综合应用所学数学知识、思想和方法解决实际问题的能力,考查建立函数关系、不等式性质、最大值、最小值等基础知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出.设箱体的长度为a米,高度为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60平方米.问当a,b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从孔流入,经沉淀后从孔流出,设箱体的长为米,高为米.已知流出的水中该杂质的质量分数与的乘积成反比,现有制箱材料60平方米,问当各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(孔的面积忽略不计).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,为处理含有某种杂质的污水,要制造一底宽为2 m的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出,设箱体的长为a m,高为b m,已知流出的水中杂质的质量分数与乘积ab成反比,现有制箱材料60 m2,问当a,b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小?(A、B孔的面积忽略不计)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,为处理含有某种杂质的污水,要制造一个底宽为2 m的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出,设箱体的长度为a m,高度为b m,已知流出的水中该杂质的质量分数与a、b的乘积ab成反比,现有制箱材料60 m2,问当a、b各为多少时,沉淀后流出的水中该杂质的质量分数最小(A,B孔的面积忽略不计).

查看答案和解析>>

同步练习册答案