精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的右顶点为,上顶点为.已知椭圆的焦距为,直线的斜率为.

(1)求椭圆的标准方程;

(2)设直线)与椭圆交于两点,且点在第二象限.延长线交于点,若的面积是面积的倍,求的值.

【答案】(1);(2).

【解析】

1)利用椭圆的焦距和的斜率列方程组,解方程组求得的值,由此求得椭圆标准方程.2)设出两点的坐标,利用“的面积是面积的倍”得到,转化为向量,并用坐标表示出来,求得两点横坐标的关系式.联立直线的方程和直线的方程,求得点的横坐标;联立椭圆的方程和直线的方程,求得点的横坐标,根据上述求得的两点横坐标的关系式列方程,解方程求得的可能取值,验证点横坐标为负数后得到的值.

解:(1)设椭圆的焦距为,由已知得

所以

所以椭圆的方程为.

(2)设点,由题意,

的面积是面积的倍,可得

所以,从而

所以,即.

易知直线的方程为,由,消去,可得.

由方程组,消去,可得.

,可得

整理得,解得.

时,,符合题意;当时,,不符合题意,舍去.

综上,的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,过的直线轴交于点,与轴交于点,记与坐标轴围成的三角形的面积为.

1)若,且,求直线的方程;

2)若都在正半轴上,求的最小值;

3)写出面积的取值范围与直线条数的对应关系.(不需要证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长为4,焦距为

求椭圆的方程;

过动点的直线交轴与点,交于点 (在第一象限),且是线段的中点.过点轴的垂线交于另一点,延长于点.

设直线的斜率分别为,证明为定值;

求直线的斜率的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面.

(1)求证: 平面

(2)若为线段的中点,且过三点的平面与线段交于点,确定点的位置,说明理由;并求三棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC-A1B1C1中,AC=BC,点M为棱A1B1的中点.

求证:(1AB∥平面A1B1C

2)平面C1CM⊥平面A1B1C

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C=1ab0)的左右焦点分别为F1F2,焦距为2,一条准线方程为x=2P为椭圆C上一点,直线PF1交椭圆C于另一点Q

1)求椭圆C的方程;

2)若点P的坐标为(0b),求过点PQF2三点的圆的方程;

3)若=,且λ[],求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,过焦点且垂直于x轴的直线被椭圆截得的线段长为3.

(1)求椭圆的方程;

(2)动直线与椭圆交于A,B两点,在平面上是否存在定点P,使得当直线PA与直线PB的斜率均存在时,斜率之和是与无关的常数?若存在,求出所有满足条件的定点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点是直线l上的动点,若在圆C上总存在不同的两点AB使得,则的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,公路围成的是一块顶角为的角形耕地,其中,在该块土地中处有一小型建筑,经测量,它到公路的距离分别为,现要过点修建一条直线公路,将三条公路围成的区域建成一个工业园.

1)以为坐标原点建立适当的平面直角坐标系,并求出点的坐标;

2)三条公路围成的工业园区的面积恰为,求公路所在直线方程.

查看答案和解析>>

同步练习册答案