精英家教网 > 高中数学 > 题目详情

如图,是边长为3的正方形,与平面所成的角为.

(1)求二面角的的余弦值;
(2)设点是线段上一动点,试确定的位置,使得,并证明你的结论.

(1);(2)三等分点

解析试题分析:(1)根据平面,确定就是与平面所成的角,从而得到,且,可以建立空间直角坐标系,写出,设出的一个法向量为,根据,解出,而平面的法向量设为,所以利用向量数量积公式得出二面角的余弦值为;(2)由题意设,则,而平面,∴,代入坐标,求出,所以点M的坐标为,此时,∴点M是线段BD靠近B点的三等分点.
试题解析:
平面就是与平面所成的角,即,∴.
如图,分别以轴,轴,轴建立空间直角坐标系,则各点的坐标如下,∴,设平面的一个法向量为,则,即,令,则.
平面,∴平面的法向量设为,∴,故二面角的余弦值为.

(2)由题意,设,则,∵平面,∴,即解得,∴点M的坐标为,此时,∴点M是线段BD靠近B点的三等分点.
考点:1.直线,平面位置关系的证明;2.利用空间向量求二面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在直角梯形中,,如图,把沿翻折,使得平面平面

(1)求证:
(2)若点为线段中点,求点到平面的距离;
(3)在线段上是否存在点,使得与平面所成角为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD.
 
(1)求证:PCBD
(2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥E-BCD的体积取到最大值.
①求此时四棱锥E-ABCD的高;
②求二面角A-DE-B的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,⊥平面,底面为梯形,,点在棱上,且

(1)当时,求证:∥面
(2)若直线与平面所成角为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

斜三棱柱,其中向量,三个向量之间的夹角均为,点分别在上且=4,如图

(Ⅰ)把向量用向量表示出来,并求
(Ⅱ)把向量表示;
(Ⅲ)求所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面,底面为正方形,分别是的中点.

(1)求证:
(2)在平面内求一点,使平面,并证明你的结论;
(3)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长是2的正方体-中,分别为
的中点. 应用空间向量方法求解下列问题.

(1)求EF的长
(2)证明:平面
(3)证明: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:四棱锥P—ABCD的底面为直角梯形,且AB∥CD,∠DAB=90o,DC=2AD=2AB,侧面PAD与底面垂直,PA=PD,点M为侧棱PC上一点.

(1)若PA=AD,求PB与平面PAD的所成角大小;
(2)问多大时,AM⊥平面PDB可能成立?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
一个几何体是由圆柱和三棱锥组合而成,点在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图3所示,其中
(1)求证:
(2)求二面角的平面角的大小.

查看答案和解析>>

同步练习册答案