如图,
是边长为3的正方形,
,
,
与平面
所成的角为
.![]()
(1)求二面角
的的余弦值;
(2)设点
是线段
上一动点,试确定
的位置,使得
,并证明你的结论.
(1)
;(2)三等分点
解析试题分析:(1)根据
平面
,确定
就是
与平面
所成的角,从而得到
,且
,可以建立空间直角坐标系,写出
,设出
的一个法向量为
,根据
,解出
,而平面
的法向量设为
,所以利用向量数量积公式得出二面角
的余弦值为
;(2)由题意设
,则
,而
平面
,∴
,代入坐标,求出
,所以点M的坐标为
,此时
,∴点M是线段BD靠近B点的三等分点.
试题解析:
平面
,
就是
与平面
所成的角,即
,∴
.
如图,分别以
为
轴,
轴,
轴建立空间直角坐标系
,则各点的坐标如下
,∴
,设平面
的一个法向量为
,则
,即
,令
,则
.
∵
平面
,∴平面
的法向量设为
,∴
,故二面角
的余弦值为
.![]()
(2)由题意,设
,则
,∵
平面
,∴
,即
解得
,∴点M的坐标为
,此时
,∴点M是线段BD靠近B点的三等分点.
考点:1.直线,平面位置关系的证明;2.利用空间向量求二面角.
科目:高中数学 来源: 题型:解答题
在直角梯形
中,
,![]()
,
,如图,把
沿
翻折,使得平面
平面
.![]()
![]()
![]()
(1)求证:
;
(2)若点
为线段
中点,求点
到平面
的距离;
(3)在线段
上是否存在点
,使得
与平面
所成角为
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD.
(1)求证:PC⊥BD;
(2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥E-BCD的体积取到最大值.
①求此时四棱锥E-ABCD的高;
②求二面角A-DE-B的正弦值的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
斜三棱柱
,其中向量
,三个向量之间的夹角均为
,点
分别在
上且
,
=4,如图![]()
(Ⅰ)把向量
用向量
表示出来,并求
;
(Ⅱ)把向量
用
表示;
(Ⅲ)求
与
所成角的余弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥
中,
底面
,底面
为正方形,
,
分别是
的中点.![]()
(1)求证:
;
(2)在平面
内求一点
,使
平面
,并证明你的结论;
(3)求
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知:四棱锥P—ABCD的底面为直角梯形,且AB∥CD,∠DAB=90o,DC=2AD=2AB,侧面PAD与底面垂直,PA=PD,点M为侧棱PC上一点.![]()
(1)若PA=AD,求PB与平面PAD的所成角大小;
(2)问
多大时,AM⊥平面PDB可能成立?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
一个几何体是由圆柱
和三棱锥
组合而成,点
、
、
在圆
的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图3所示,其中
,
,
,
.
(1)求证:
;
(2)求二面角
的平面角的大小.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com