(本小题满分14分)
一个几何体是由圆柱
和三棱锥
组合而成,点
、
、
在圆
的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图3所示,其中
,
,
,
.
(1)求证:
;
(2)求二面角
的平面角的大小.![]()
(本小题主要考查空间线线、线面关系,二面角,三视图等知识,考查化归与转化数学思想方法,以及空间想象能力、推理论证能力、运算求解能力.)
方法1:(1)证明:因为
,
,所以
,即
.
又因为
,
,所以
平面
.
因为
,所以
.………………………………………………………………4分
(2)解:因为点
、
、
在圆
的圆周上,且
,所以
为圆
的直径.
设圆
的半径为
,圆柱高为
,根据正(主)视图、侧(左)视图的面积可得,
…………………………………………6分
解得![]()
![]()
所以
,
.………………………………………………………………………7分
过点
作
于点
,连接
,
由(1)知,
,
,所以
平面
.
因为
平面
,所以
.
所以
为二面角
的平面角.…………………………………………………………9分
由(1)知,
平面
,
平面
,
所以
,即△
为直角三角形.
在
△
中,
,
,则
.
由
,解得
.
因为
.…………………………………………………………………………13分
所以![]()
.
所以二面角
的平面角大小为
.………………………………………………………14分
方法2:(1)证明:因为点
、
、
在圆
的圆周上,且
,所以
为圆
的直径.
设圆
的半径为
,圆柱高为
,根据正(主)视图、侧(左)视图的面积可得,解析
科目:高中数学 来源: 题型:解答题
如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.![]()
(1)求证AC⊥平面DEF;
(2)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
(3)求平面ABD与平面DEF所成锐二面角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)
如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,![]()
,且AC=BC.
(1)求证:
平面EBC;w.w.zxxk.c.o
(2求二面角
的大小.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,侧棱PA的长为2,且PA与AB、AD的夹角都等于600,
是PC的中点,设
.
(1)试用
表示出向量
;
(2)求
的长.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com