精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)=\sqrt{|{x+2}|+|{x-4}|-m}$的定义域为R.
(Ⅰ)求实数m的范围;
(Ⅱ)若m的最大值为n,当正数a,b满足$\frac{4}{a+5b}+\frac{1}{3a+2b}=n$时,求4a+7b的最小值.

分析 (I)利用绝对值不等式的性质即可得出.
(II)利用柯西不等式的性质即可得出.

解答 解:(Ⅰ)∵函数的定义域为R,|x+2|+|x-4|≥|(x+2)-(x-4)|=6,∴m≤6.
(Ⅱ)由(Ⅰ)知n=6,由柯西不等式知,4a+7b=$\frac{1}{6}(4a+7b)(\frac{4}{a+5b}+\frac{1}{3a+2b})$=$\frac{1}{6}[(a+5b)+(3a+2b)]$$(\frac{4}{a+5b}+\frac{1}{3a+2b})≥\frac{3}{2}$,当且仅当$a=\frac{1}{26},b=\frac{5}{26}$时取等号,∴4a+7b的最小值为$\frac{3}{2}$.

点评 本题考查了绝对值不等式的性质、柯西不等式的性质、函数的定义域,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知圆和直线的方程如图所示,请用不等式表示图中阴影部分所示的平面区域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.$\frac{1}{0!n!}$+$\frac{1}{1!(n-1)!}$+$\frac{1}{2!(n-2)!}$+…+$\frac{1}{n!0!}$=$\frac{{2}^{n}}{n!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\sqrt{3}$sinx+3cosx=$\frac{3\sqrt{3}}{2}$,则tan($\frac{7π}{6}$-x)等于(  )
A.±$\frac{\sqrt{7}}{3}$B.$±\frac{3}{4}$C.±$\frac{\sqrt{7}}{4}$D.$±\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(x+1)ln(x+1)-ax2-2ax(a∈R),它的导函数为f′(x).
(Ⅰ)若函数g(x)=f′(x)+(2a-1)x只有一个零点,求a的值;
(Ⅱ)是否存在实数a,使得关于x的不等式f(x)<0在(0,+∞)上恒成立?若存在,求a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.实数m分别为何值时,复数z=$\frac{2{m}^{2}+m-3}{m+3}$+(m2-3m-18)i是
(1)实数;
(2)虚数;
(3)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,($\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}$+$\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,|${\overrightarrow{AB}$+$\overrightarrow{AC}}$|=3,A∈[$\frac{π}{3}$,$\frac{5π}{6}$],则求$\overrightarrow{AB}$•$\overrightarrow{AC}$的最大值为(  )
A.3B.1C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=$\sqrt{cosx-1}$的定义域是{x|x=2kπ,k∈z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\frac{{\sqrt{9-{x^2}}}}{{{{log}_3}(x-1)}}$的定义域为(  )
A.[-3,2)∪(2,3]B.[3,+∞)C.(1,3]D.(1,2)∪(2,3]

查看答案和解析>>

同步练习册答案