精英家教网 > 高中数学 > 题目详情

【题目】下列各小题中,P是q的充要条件的是(08年山东理改编)
1)p:m<﹣2或m>6;q:y=x2+mx+m+3有两个不同的零点.
2)p: =1,q:y=f(x)是偶函数.
3)p:cosα=cosβ,q:tanα=tanβ.
4)p:A∩B=A,q:CUBCUA.

【答案】(1)(4)
【解析】解:∵y=x2+mx+m+3有两个不同的零点,
∴△=m2﹣4(m+3>0,解得m<﹣2或m>6.
∴p:“m<﹣2或m>6是q“:“y=x2+mx+m+3有两个不同的零点“的充要条件.故(1)成立.
可得f(﹣x)=f(x),
但y=f(x)的定义域不一定关于原点对称;故(2)不成立.
3)α=β是tanα=tanβ的既不充分也不必要条件.故(3)不成立.
4)画图可得P是q的充要条件.
所以答案是(1)(4).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】解答
(1)用反证法证明:已知实数a,b,c满足a+b+c=1,求证:a、b、c中至少有一个数不大于
(2)用分析法证明: + >2 +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)试讨论函数的单调性;

2)若不等式在区间上恒成立,的取值范围,并证明:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足).

(1)求证:数列是等比数列;

(2)若满足,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知6只小白鼠有1只被病毒感染,需要通过对其化验病毒来确定是否感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染为止.方案乙:将6只分为两组,每组三个,并将它们混合在一起化验,若存在病毒,则表明感染在这三只当中,然后逐个化验,直到确定感染为止;若结果不含病毒,则在另外一组中逐个进行化验.

(1)求依据方案乙所需化验恰好为2次的概率.

(2)首次化验化验费为10元,第二次化验化验费为8元,第三次及其以后每次化验费都是6元,列出方案甲所需化验费用的分布列,并估计用方案甲平均需要体验费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中, ,外接球的球心为,点是侧棱上的一个动点.有下列判断:

① 直线与直线是异面直线;② 一定不垂直

③ 三棱锥的体积为定值; ④的最小值为.

其中正确的个数是

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求证: ,并指出等号成立的条件;

(Ⅱ)求证:对任意实数,总存在实数,有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中b是常数.
(1)若y=f(x)是奇函数,求b的值;
(2)求证:y=f(x)是单调增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)=2x
(1)若f(x)= ,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案