精英家教网 > 高中数学 > 题目详情

【题目】已知6只小白鼠有1只被病毒感染,需要通过对其化验病毒来确定是否感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染为止.方案乙:将6只分为两组,每组三个,并将它们混合在一起化验,若存在病毒,则表明感染在这三只当中,然后逐个化验,直到确定感染为止;若结果不含病毒,则在另外一组中逐个进行化验.

(1)求依据方案乙所需化验恰好为2次的概率.

(2)首次化验化验费为10元,第二次化验化验费为8元,第三次及其以后每次化验费都是6元,列出方案甲所需化验费用的分布列,并估计用方案甲平均需要体验费多少元?

【答案】(1);(2)分布列见解析, .

【解析】试题分析:(1)方案乙中所需化验次数恰好为2次的事件有两种情况:第一种,先化验一组,结果不含病毒DNA,再从另一组任取一个样品进行化验,可得恰含有病毒的概率第二种,先化验一组,结果含有病毒DNA,再从中逐个化验,恰第一个样品含有病毒的概率,利用互斥事件的概率计算公式即可得出;

(2)设方案甲化验的次数为,则可能的取值为1,2,3,4,5,对应的化验费为元,利用相互独立事件的概率计算公式可得:

试题解析:

(1)方案乙所需化验恰好为2次的事件有两种情况:第一种,先化验一组,结果不含病毒,再从另一组中任取一个样品进行化验,则恰含有病毒的概率为,第二种,先化验一组,结果含病毒,再从中逐个化验,恰第一个样品含有病毒的概率为.

所以依据方案乙所需化验恰好为2次的概率为

(2)设方案甲化验的次数为,则可能的取值为1,2,3,4,5,对应的化验费用为元,则

则其化验费用的分布列为

所以(元).

所以甲方案平均需要化验费

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点,椭圆的左,右顶点分别为.过点的直线与椭圆交于两点,且的面积是的面积的3倍.

(Ⅰ)求椭圆的方程;

(Ⅱ)若轴垂直,是椭圆上位于直线两侧的动点,且满足,试问直线的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知自变量xy满足则当3S5时,z3x2y的最大值的变化范围为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届河南省郑州市第一中学高三上学期第一次质量检测数学(文)】已知函数

(1)证明:

(2)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2014高考陕西版文第21题】设函数.

(1)为自然对数的底数)时,求的最小值;

(2)讨论函数零点的个数;

(3)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

如图,边长为4的正方形中,点分别是上的点,将折起,使两点重合于.

(1)求证:

(2)当时,

求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

如图5,已知点是圆心为半径为1的半圆弧上从点数起的第一个三等分点,是直径,平面,点的中点.

1)求二面角的余弦值.

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,曲线在点处的切线与直线垂直.

1)求的值;

(2)若对于任意的恒成立,求的取值范围;

(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有4个人参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.

(1) 求出4个人中恰有2个人去 参加甲游戏的概率;

(2)求这4个人中去参加甲游戏人数大于去参加乙游戏的人数的概率;

(3)用分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望

查看答案和解析>>

同步练习册答案