精英家教网 > 高中数学 > 题目详情

【题目】,曲线在点处的切线与直线垂直.

1)求的值;

(2)若对于任意的恒成立,求的取值范围;

(3)求证:

【答案】)详见解析

【解析】试题分析:)先求导数,再根据导数几何意义列方程,解方程可得的值;()不等式恒成立问题,一般转化为对应函数最值问题,本题去分母转化为差函数: ,因为,所以最大值不小于,根据导函数符号可得才满足条件.)不等式证明中涉及求和问题,一般方法为适当放缩,再利用裂项相消法给予证明.本题由()知,当, , 成立,所以放缩这一难点已暗示,下面只需令,即,最后叠加可得证.

试题解析:

由题设 .

, ,即

,即.

,这与题设矛盾

, 单调递增, ,与题设矛盾.

单调递减, ,即不等式成立

综上所述, .

)由()知,当, , 成立.

不妨令所以

…………

累加可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ax2-(3a-1)x+a2在[1,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知6只小白鼠有1只被病毒感染,需要通过对其化验病毒来确定是否感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染为止.方案乙:将6只分为两组,每组三个,并将它们混合在一起化验,若存在病毒,则表明感染在这三只当中,然后逐个化验,直到确定感染为止;若结果不含病毒,则在另外一组中逐个进行化验.

(1)求依据方案乙所需化验恰好为2次的概率.

(2)首次化验化验费为10元,第二次化验化验费为8元,第三次及其以后每次化验费都是6元,列出方案甲所需化验费用的分布列,并估计用方案甲平均需要体验费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列对应是否为集合A到集合B的函数.

(1)ARB{x|x>0}fxy|x|

(2)AZBZfxyx2

(3)AZBZfxy

(4)A{x|1x1}B{0}fxy0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是直角梯形,,,侧面底面,是以为底的等腰三角形.

)证明:

)若四棱锥的体积等于.问:是否存在过点的平面分别交于点,使得平面平面?若存在,求出的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD平面CDE,H是BE的中点,G是AE,DF的交点

(1)求证:GH平面CDE;

(2)求证:面ADEF面ABCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学家刘徽是公元三世纪世界上最杰出的数学家,他在《九章算术圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法.所谓“割圆术”,即通过圆内接正多边形细割圆,并使正多边形的周长无限接近圆的周长,进而来求得较为精确的圆周率(圆周率指圆周长与该圆直径的比率).刘徽计算圆周率是从正六边形开始的,易知圆的内接正六边形可分为六个全等的正三角形,每个三角形的边长均为圆的半径

,此时圆内接正六边形的周长为

,此时若将圆内接正六边形的周长等同于圆的周长,可得圆周率为3,当用正二十四边形内接于圆时,按照上述算法,可得圆周率为__________.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,已知曲线,将曲线上所有点横坐标,纵坐标分别伸长为原来的倍和倍后,得到曲线

(1)试写出曲线的参数方程;

(2)在曲线上求点,使得点到直线的距离最大,并求距离最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3.

(1)求三种粽子各取到1个的概率;

(2)X表示取到的豆沙粽个数,求X的分布列与数学期望.

查看答案和解析>>

同步练习册答案