精英家教网 > 高中数学 > 题目详情
(2012•黄冈模拟)设△ABC的内角A,B,C所对的边长分别为a,b,c,且cosB=
45
,b=2.
(Ⅰ)当A=30°时,求a的值;
(Ⅱ)当△ABC的面积为3时,求a+c的值.
分析:(Ⅰ)因为cosB=
4
5
,可得sinB=
3
5
,由正弦定理求出a的值.
(Ⅱ)因为△ABC的面积S=
1
2
acsinB
=3,sinB=
3
5
,可以求得ac=10,再由余弦定理可得a2+c2=20=(a+c)2-2ac,由此求出a+c的值.
解答:解:(Ⅰ)因为cosB=
4
5
,所以sinB=
3
5
.…(2分)
由正弦定理
a
sinA
=
b
sinB
,可得
a
sin30°
=
10
3
.…(4分)
所以a=
5
3
.…(6分)
(Ⅱ)因为△ABC的面积S=
1
2
acsinB
=3,且sinB=
3
5

所以
3
10
ac=3
,ac=10.…(8分)
由余弦定理b2=a2+c2-2accosB,…(9分)
4=a2+c2-
8
5
ac=a2+c2-16
,即a2+c2=20.…(10分)
所以(a+c)2 -2ac=(a+c)2 -20=20,
故(a+c)2=40,…(12分)
所以,a+c=2
10
.…(13分)
点评:本题主要考查正弦定理、余弦定理的应用,同角三角函数的基本关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黄冈模拟)已知函数f(x)=x3-3x2+1,g(x)=
(x-
1
2
)2+1(x>0)
-(x+3)2+1(x≤0)
,则方程g[f(x)]-a=0(a为正实数)的实数根最多有(  )个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄冈模拟)已知函数f(x)=kx3+3(k-1)x2-k2+1(k>0)的单调递减区间是(0,4),则k的值是
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄冈模拟)如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AA1=
6
,AC1
=3,AB=2,BC=1.
(1)证明:BC⊥平面ACC1A1
(2)D为CC1中点,在棱AB上是否存在一点E,使DE∥平面AB1C1,证明你的结论.
(3)求二面角B-AB1-C1的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄冈模拟)在三棱锥O-ABC中,三条棱OA、OB、OC两两相互垂直,且OA>OB>OC,分别过OA、OB、OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3中的最小值是
S3
S3

查看答案和解析>>

同步练习册答案