精英家教网 > 高中数学 > 题目详情
(2012•黄冈模拟)已知函数f(x)=x3-3x2+1,g(x)=
(x-
1
2
)2+1(x>0)
-(x+3)2+1(x≤0)
,则方程g[f(x)]-a=0(a为正实数)的实数根最多有(  )个.
分析:利用导数求的f(x)的极大值为f(0)=1,极小值为f(2)=-3,且函数的值域为R.分a=1、0<a<1、a>1三种
情况,研究方程跟的个数,从而得出结论.
解答:解:∵函数f(x)=x3-3x2+1,g(x)=
(x-
1
2
)2+1(x>0)
-(x+3)2+1(x≤0)

令f′(x)=0 可得 x=0,x=2,在(-∞,0)上,f′(x)>0,f(x)是增函数;
在(0,2)上,f′(x)<0,f(x)是减函数;在(2,+∞)上,f′(x)>0,f(x)是增函数.
故f(x)的极大值为f(0)=1,极小值为f(2)=-3,且函数的值域为R.
由函数g(x)的图象可得,当x=-3或x=
1
2
时,g(x)=1.
①当a=1时,若方程g[f(x)]-a=0,则:
f(x)=-3,此时方程有2个根,或f(x)=
1
2
,此时方程有3个根,
故方程g[f(x)]-a=0可能共有5个根.
②当0<a<1时,方程g[f(x)]-a=0,则:
f(x)∈(-4,-3),此时方程有1个根,或f(x)∈(-3,-2),此时方程有3个根
故方程g[f(x)]-a=0可能共有4个根.
③当a>1时,方程g[f(x)]-a=0,则:f(x)∈(0,
1
2
),或f(x)∈(
1
2
,+∞),
方程可能有4个、5个或6个根.
故方程g[f(x)]-a=0(a为正实数)的实数根最多有6个,
故选 A.
点评:本题考查的知识点是根的存在性及根的个数判断,其中分析内外函数的图象是解答本题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黄冈模拟)设△ABC的内角A,B,C所对的边长分别为a,b,c,且cosB=
45
,b=2.
(Ⅰ)当A=30°时,求a的值;
(Ⅱ)当△ABC的面积为3时,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄冈模拟)已知函数f(x)=kx3+3(k-1)x2-k2+1(k>0)的单调递减区间是(0,4),则k的值是
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄冈模拟)如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AA1=
6
,AC1
=3,AB=2,BC=1.
(1)证明:BC⊥平面ACC1A1
(2)D为CC1中点,在棱AB上是否存在一点E,使DE∥平面AB1C1,证明你的结论.
(3)求二面角B-AB1-C1的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄冈模拟)在三棱锥O-ABC中,三条棱OA、OB、OC两两相互垂直,且OA>OB>OC,分别过OA、OB、OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3中的最小值是
S3
S3

查看答案和解析>>

同步练习册答案