精英家教网 > 高中数学 > 题目详情
(2012•黄冈模拟)已知函数f(x)=kx3+3(k-1)x2-k2+1(k>0)的单调递减区间是(0,4),则k的值是
1
3
1
3
分析:将三次多项式函数求导数,得f'(x)=3kx2+6(k-1)x,结合题意得f'(x)<0的解集是(0,4),根据一元二次不等式解法的结论,比较系数即可得到实数k的值.
解答:解:对函数求导数,得f'(x)=3kx2+6(k-1)x
∵函数的单调递减区间是(0,4),
∴f'(x)<0的解集是(0,4),
∵k>0,
∴3kx2+6(k-1)x<0等价于3kx(x-4)<0,
得6(k-1)=-12k,解之得k=
1
3

故答案为:
1
3
点评:本题给出三次多项式函数的单调减区间,求参数k的值,着重考查了利用导数研究函数的单调性和一元二次不等式解法等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黄冈模拟)设△ABC的内角A,B,C所对的边长分别为a,b,c,且cosB=
45
,b=2.
(Ⅰ)当A=30°时,求a的值;
(Ⅱ)当△ABC的面积为3时,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄冈模拟)已知函数f(x)=x3-3x2+1,g(x)=
(x-
1
2
)2+1(x>0)
-(x+3)2+1(x≤0)
,则方程g[f(x)]-a=0(a为正实数)的实数根最多有(  )个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄冈模拟)如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AA1=
6
,AC1
=3,AB=2,BC=1.
(1)证明:BC⊥平面ACC1A1
(2)D为CC1中点,在棱AB上是否存在一点E,使DE∥平面AB1C1,证明你的结论.
(3)求二面角B-AB1-C1的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄冈模拟)在三棱锥O-ABC中,三条棱OA、OB、OC两两相互垂直,且OA>OB>OC,分别过OA、OB、OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3中的最小值是
S3
S3

查看答案和解析>>

同步练习册答案