精英家教网 > 高中数学 > 题目详情
已知O为空间直角坐标系的原点,以下能使向量
OA
OB
OC
共面的三点A,B,C的坐标是(  )
A、A(1,0,0),B(0,1,0),C(0,0,1)
B、A(1,2,3),B(3,0,2),C(4,2,5)
C、A(1,1,0),B(1,0,1),C(0,1,1)
D、A(1,1,1),B(1,1,0),C(1,0,1)
考点:共线向量与共面向量
专题:空间向量及应用
分析:如果向量
OA
OB
OC
共面,那么它们可以线性表示,由此对选项分析,找出正确答案.
解答: 解:由题意选项A,C,D的对应向量不能线性表示,
对于选项B,
向量
OA
=(1,2,3),
OB
=(3,0,2),
OC
=(4,2,5),
所以向量
OA
+
OB
=(1,2,3)+(3,0,2)=(4,2,5)=
OC

所以向量
OA
OB
OC
共面.
故选:B.
点评:本题考查了空间向量共面的判断,利用共面向量基本定理解答,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1
3
+|-2
1
3
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2,g(x)=alnx(a∈R).
(1)设a>0,若不等式f(x)≥g(x)恒成立,求实数a的取值范围;
(2)令h(x)=
1
2
xf(x)-3x2g′(x),若h(x)在(-2,2)内的值域为闭区间,求实数a的取值范围;
(3)求证:
ln24
24
+
ln34
34
+…+
lnn4
n4
2
e
(其中e是自然对数的底数,n≥2,n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:
a-5x>ax+7(a>0,a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
①若0>a>b,则
1
a
1
b

②x>0,x+
1
x-1
的最小值为3;
③椭圆
x2
4
+
y2
3
=1比椭圆
x2
3
+
y2
2
=1更接近于圆;
④设A,B为平面内两个定点,若有|PA|+|PB|=2,则动点P的轨迹是椭圆;
其中真命题的序号为
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题,其中正确的命题是
 
(把所有正确的命题的选项都填上).
①函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称;
②在R上连续的函数f(x)若是增函数,则对任意x0∈R均有f'(x0)>0成立;
③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
④若P为双曲线x2-
y2
9
=1上一点,F1、F2为双曲线的左右焦点,且|PF2|=4,则|PF1|=2或6;
⑤如果(1+x+x2)(x-a)5(a为实常数)的展开式中所有项的系数和为0,则展开式中含x4项的系数为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2-x=0与直线x+y-1=0交于P,Q两点,动圆C过P,Q两点.
(1)若圆C圆心在直线y=
1
2
x上,求圆C的方程;
(2)求动圆C的面积的最小值;
(3)若圆C与x轴相交于两点M,N(点N横坐标大于1).若过点M任作的一条与圆O:x2+y2=4交于A,B两点直线都有∠ANM=∠BNM,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(1+x)2-2ln(1+x)的单调增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q是AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在线段PC上是否存在点M,使二面角M-BQ-C的大小为60°.若存在,试确定点M的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案