精英家教网 > 高中数学 > 题目详情
已知α为锐角,且tanα=
2
-1,函数f(x)=2xtan2a+sin(2a+
π
4
),数列{an}的首项a1=1,an+1=f(an).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)求数列{nan}的前n项和Sn
(Ⅰ)∵tanα=
2
-1,
∴tan2α=
2tanα
1-tan2α
=
2(
2
-1)
1-(
2
-1)
2
=1,又α为锐角,
∴2α=
π
4

∴sin(2α+
π
4
)=1,
∴f(x)=2x+1;
(Ⅱ)∵an+1=f(an)=2an+1,
∴an+1+1=2(an+1),
∵a1=1,
∴数列{an+1}是以2为首项,2为公比的等比数列,
∴an+1=2•2n-1=2n
∴an=2n-1,
∴nan=n•2n-n,
下面先求{n•2n}的前n项和Tn
Tn=1×2+2×22+3×23+…+(n-1)•2n-1+n•2n
2Tn=1×22+2×23+…+(n-1)•2n+n•2n+1
两式相减得:-Tn=2+22+23+…+2n-n•2n+1
=
2-2n+1
1-2
-n•2n+1
=2n+1-2-n•2n+1
∴Tn=2+(n-1)•2n+1
∴Sn=2+(n-1)•2n+1-
(1+n)n
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的通项公式an=-2n+11,前n项和Sn
(1)求数列{an}的前n项和Sn
(2)|a1|+|a2|+|a3|+…+|a14|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}满足a3=7,a5+a7=26,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=
1
a2n
-1
(n∈N),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
2
n•(an+2)
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和Sn=12n-n2
(Ⅰ)求数列{an}的通项公式,并证明{an}是等差数列;
(Ⅱ)若cn=12-an,求数列{
1
cncn+1
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和为Sn,其中a1=
1
2
,5Sn=7an-an-1+5Sn-1(n≥2);等差数列{bn},其中b3=2,b5=6,.
(1)求数列{an}的通项公式;
(2)若cn=(bn+3)an,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{an}时公差不为零的等差数列,a1=1,a1,a3,a9成等比数列,则数列{an2an}的前n项和sn=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)证明数列{an-n}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1•cosx-an+2sinx满足f′(
π
2
)=0
cn=an+
1
2an
,则数列{cn}的前n项和Sn为(  )
A.
n2+n
2
-
1
2n
B.
n2+n+4
2
-
1
2n-1
C.
n2+n+2
2
-
1
2n
D.
n2+n+4
2
-
1
2n

查看答案和解析>>

同步练习册答案