精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=12n-n2
(Ⅰ)求数列{an}的通项公式,并证明{an}是等差数列;
(Ⅱ)若cn=12-an,求数列{
1
cncn+1
}
的前n项和Tn
解( I)当n≥2时,an=Sn-Sn-1=12n-n2-[12(n-1)-(n-1)2]=13-2n,
当n=1时,a1=S1=12-1=11适合上式,
∴an=13-2n,
∴当n∈N*时,an+1-an=13-2(n+1)-(13-2n)=-2为定值,
∴数列{an}是等差数列;
( II)∵cn=12-an=12-(13-2n)=2n-1,n∈N*
1
cncn+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),
∴Sn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]=
1
2
(1-
1
2n+1
)=
n
2n+1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

数列{an}的前n项和为Sn,已知Sn=
n2+3n
2

(1)求数列{an}的通项公式;
(2)若数列{cn}满足cn=
an,n为奇数
2n,n为偶数
,求数列{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在数列{an}中,a1=1,且对于任意自然数n,都有an+1=an+n,求a100

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等比数列{an}中,已知a2=2,a5=16.
(Ⅰ)求数列{an}的通项an
(Ⅱ)在等差数列{bn}中,若b1=a5,b8=a2,求数列{bn}前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知n∈N*,设Sn是单调递减的等比数列{an}的前n项和,a1=1,且S2+a2、S4+a4、S3+a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列x∈(0,+∞)满足b1=2a1,bn+1bn+bn+1-bn=0,求数列f(x)max≤0的通项公式;
(Ⅲ)在满足(Ⅱ)的条件下,若cn=
ancos(nπ)
bn
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知α为锐角,且tanα=
2
-1,函数f(x)=2xtan2a+sin(2a+
π
4
),数列{an}的首项a1=1,an+1=f(an).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)求数列{nan}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}是递增数列,且不等式x2-6x+8<0的解集为{x|a2<x<a4}.
(1)求数列{an}的通项公式;
(2)若bn=
1
anan+1
,求数列{bn}的前项的和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和为Sn,Sn=2an-2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an•log2an+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列2008,2009,1,-2008,-2009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2013项之和S2013等于(  )
A.2008B.2010C.4018D.1

查看答案和解析>>

同步练习册答案