精英家教网 > 高中数学 > 题目详情
已知等差数列{an}是递增数列,且不等式x2-6x+8<0的解集为{x|a2<x<a4}.
(1)求数列{an}的通项公式;
(2)若bn=
1
anan+1
,求数列{bn}的前项的和Sn
(1)∵不等式x2-6x+8<0的解集为{x|2<x<4}…(2分)
且等差数列{an}是递增数列
∴a2=2,a4=4,…(4分)
a1+d=2
a1+3d=4

解得a1=1,d=1,
∴等差数列{an}的首项a1=1,公差d=1,…(6分)
∴an=n…(7分)
(2)∵an=n,bn=
1
anan+1

bn=
1
n(n+1)
=
1
n
-
1
n+1
,…(10分)
Sn=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)

=1-
1
n+1

=
n
n+1
.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知数列{an}了前n项和Sn=口n-1,则此数列了奇数项了前n项和是(  )
A.
1
3
(2n+1-1)
B.
1
3
(2n+1-2
C.
1
3
(22n-1)
D.
1
3
(22n-2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知等差数列{an}中,d=
1
3
,n=37,sn=629,求a1及an
(2)求和1+1,
1
2
+3,
1
4
+5
,…,
1
2n-1
+2n-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和Sn=12n-n2
(Ⅰ)求数列{an}的通项公式,并证明{an}是等差数列;
(Ⅱ)若cn=12-an,求数列{
1
cncn+1
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}满足对任意的n∈N+,都有an>0,且a13+a23+…+an3=(a1+a2+…+an2
(1)求数列{an}的通项公式an
(2)设数列{
1
anan+2
}的前n项和为Sn,不等式Sn
1
3
loga(1-a)对任意的正整数n恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{an}时公差不为零的等差数列,a1=1,a1,a3,a9成等比数列,则数列{an2an}的前n项和sn=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设递增等比数列{an}的前n项和为Sn,且a2=3,S3=13,数列{bn}满足b1=a1,点P(bn,bn+1)在直线x-y+2=0上,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
bn
an
,数列{cn}的前n项和Tn,若Tn>2a-1恒成立(n∈N*),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{ an}的前n项和为Sn=n2-5n+2,则数列{|an|}的前10项和为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正项等比数列{an}(n∈N*),首项a1=3,前n项和为Sn,且S3+a3、S5+a5、S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{nSn}的前n项和Tn

查看答案和解析>>

同步练习册答案