精英家教网 > 高中数学 > 题目详情
(1)已知等差数列{an}中,d=
1
3
,n=37,sn=629,求a1及an
(2)求和1+1,
1
2
+3,
1
4
+5
,…,
1
2n-1
+2n-1
(1)∵等差数列{an}中,d=
1
3
,n=37,sn=629,
∴629=37a1+
37×(37-1)
2
×
1
3

解得:a1=11,
∴an=11+
1
3
(n-1)=
1
3
n+
32
3

(2)设数列1+1,
1
2
+3,
1
4
+5,…,
1
2n-1
+2n-1的前n项和为Sn
则Sn=(1+3+…+2n-1)+(1+
1
2
+
1
4
+…+
1
2n-1

=
(1+2n-1)n
2
+
1-(
1
2
)
n
1-
1
2

=n2+2-(
1
2
)
n-1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知数列满足:当n为奇数时,当n为偶数时,则数列的前2m项的和(m是正整数)为                 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知{an}是递增的等差数列,它的前三项的和为-3,前三项的积为8.
(1)求数列{an}的通项公式;
(2)求数列{|an|}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在数列{an}中,a1=1,且对于任意自然数n,都有an+1=an+n,求a100

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}的前n项和Sn=n2-n(n∈N+)
(1)判断数列{an}是否为等差数列,并证明你的结论;
(2)设bn=
1
Sn
,且{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等比数列{an}中,已知a2=2,a5=16.
(Ⅰ)求数列{an}的通项an
(Ⅱ)在等差数列{bn}中,若b1=a5,b8=a2,求数列{bn}前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知n∈N*,设Sn是单调递减的等比数列{an}的前n项和,a1=1,且S2+a2、S4+a4、S3+a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列x∈(0,+∞)满足b1=2a1,bn+1bn+bn+1-bn=0,求数列f(x)max≤0的通项公式;
(Ⅲ)在满足(Ⅱ)的条件下,若cn=
ancos(nπ)
bn
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}是递增数列,且不等式x2-6x+8<0的解集为{x|a2<x<a4}.
(1)求数列{an}的通项公式;
(2)若bn=
1
anan+1
,求数列{bn}的前项的和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知递增的等比数列{an}满足:a2+a3+a4=28,a3+2是a2与a4的等差中项.
(1)求数列{an}的通项公式;
(2)假设bn=
an
(an+1)(an+1+1)
,其数列{bn}的前n项和Tn,并解不等式Tn
127
390

查看答案和解析>>

同步练习册答案