精英家教网 > 高中数学 > 题目详情
在等比数列{an}中,已知a2=2,a5=16.
(Ⅰ)求数列{an}的通项an
(Ⅱ)在等差数列{bn}中,若b1=a5,b8=a2,求数列{bn}前n项和Sn
(Ⅰ)设等比数列{an}的公比为q,
∵a2=2,a5=16,
∴2•q3=16,
∴q=2,a1=1,
∴an=2n-1
(Ⅱ)由已知得b1=16,b8=2,又b8=b1+(8+1)d,解得d=-2.
∴Sn=nb1+
n(n-1)
2
d
=16n+
n(n-1)
2
×(-2)
=-n2+17n.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

等差数列的公差,则数列的前项和取得最大值时的项数是(   )
A.5B.6C.5或6D.6或7

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等差数列{an}中,a1=8,a3=4.
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
(3)设bn=
1
n(12-an)
(n∈N*),求Tn=b1+b2+…+bn(n∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}满足a3=7,a5+a7=26,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=
1
a2n
-1
(n∈N),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知等差数列{an}中,d=
1
3
,n=37,sn=629,求a1及an
(2)求和1+1,
1
2
+3,
1
4
+5
,…,
1
2n-1
+2n-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
2
n•(an+2)
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和Sn=12n-n2
(Ⅰ)求数列{an}的通项公式,并证明{an}是等差数列;
(Ⅱ)若cn=12-an,求数列{
1
cncn+1
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{an}时公差不为零的等差数列,a1=1,a1,a3,a9成等比数列,则数列{an2an}的前n项和sn=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个等比数列的前n项之和是2n-b,那么它的前n项的各项平方之和为(  )
A.(2n-1)2B.
1
3
(2n-1)
C.4n-1D.
1
3
(4n-1)

查看答案和解析>>

同步练习册答案