精英家教网 > 高中数学 > 题目详情
已知数列{ an}的前n项和为Sn=n2-5n+2,则数列{|an|}的前10项和为______.
∵Sn=n2-5n+2,
当n=1时,a1=S1=-2
当n≥2时,an=sn-sn-1=n2-5n+2-(n-1)2+5(n-1)-2=2n-6
由an<0 得 n<3,即数列的前2项为负,
S10=|a1|+|a2|+…+|a10|
=-a1-a2+a3+…+a10
=s10-2(a1+a2)=52-2(-2-2)=60
故答案为:60
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在数列{an}中,a1=1,且对于任意自然数n,都有an+1=an+n,求a100

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}是递增数列,且不等式x2-6x+8<0的解集为{x|a2<x<a4}.
(1)求数列{an}的通项公式;
(2)若bn=
1
anan+1
,求数列{bn}的前项的和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和为Sn,Sn=2an-2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an•log2an+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知n次多项式Sn(x)=(1+2x)(1+4x)(1+8x)…(1+2nx),其中n是正整数.记Sn(x)的展开式中x的系数是an,x2的系数是bn
(Ⅰ)求an
(Ⅱ)证明:bn+1-bn=4n+1-2n+2
(Ⅲ)是否存在等比数列{cn}和正数c,使得bn=(cn-c)(cn+1-c)对任意正整数n成立?若存在,求出通项cn和正数c;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}的前n项和是Sn=2n2-25n,试求数列{|an|}的前10项的和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知递增的等比数列{an}满足:a2+a3+a4=28,a3+2是a2与a4的等差中项.
(1)求数列{an}的通项公式;
(2)假设bn=
an
(an+1)(an+1+1)
,其数列{bn}的前n项和Tn,并解不等式Tn
127
390

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列2008,2009,1,-2008,-2009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2013项之和S2013等于(  )
A.2008B.2010C.4018D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列的首项,
求数列的通项公式;
的前项和为,求的最小值.

查看答案和解析>>

同步练习册答案