精英家教网 > 高中数学 > 题目详情
数列{an}的前n项和为Sn,已知Sn=
n2+3n
2

(1)求数列{an}的通项公式;
(2)若数列{cn}满足cn=
an,n为奇数
2n,n为偶数
,求数列{cn}的前n项和为Tn
(1)当n=1时,a1=s1=2
n≥2时,an=sn-sn-1=
n2+3n
2
-
(n-1)2+3(n-1)
2
=n+1
当n=1时,a1=2适合上式
故an=n+1
(2)当n为偶数时,Tn=(a1+a3+…+an-1)+(a2+a4+…+an
=(2+4+…+n)+(22+24+…+2n
=
(2+n)•
n
2
2
+
4(1-4
n
2
)
1-4

=
n(n+2)
4
+
4(2n-1)
3

当n为奇数时,n-1为偶数
Tn=(a1+a3+…+an)+(a2+a4+…+an-1
=(2+4+…+n+1)+(22+24+…+2n-1
=
(3+n)•
n+1
2
2
+
4(1-4
n-1
2
)
1-4

=
n2+4n+3
4
+
4(2n-1-1)
3

Tn=
n(n+2)
4
+
4(2n-1)
3
,n为偶数
(n+1)(n+3)
4
+
4(2n-1-1)
3
,n为奇数
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

在等差数列{an}中,a1>0,a5=3a7,前n项和为Sn,若Sn取得最大值,则n=    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等差数列的公差,则数列的前项和取得最大值时的项数是(   )
A.5B.6C.5或6D.6或7

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的通项公式an=-2n+11,前n项和Sn
(1)求数列{an}的前n项和Sn
(2)|a1|+|a2|+|a3|+…+|a14|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}了前n项和Sn=口n-1,则此数列了奇数项了前n项和是(  )
A.
1
3
(2n+1-1)
B.
1
3
(2n+1-2
C.
1
3
(22n-1)
D.
1
3
(22n-2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等差数列{an}中,a1=8,a3=4.
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
(3)设bn=
1
n(12-an)
(n∈N*),求Tn=b1+b2+…+bn(n∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和Sn=12n-n2
(Ⅰ)求数列{an}的通项公式,并证明{an}是等差数列;
(Ⅱ)若cn=12-an,求数列{
1
cncn+1
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

理)已知数列{an}对任意p、q∈N*有apaq=ap+q,若,则=           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列中,已知,则的前n项和=______________

查看答案和解析>>

同步练习册答案