精英家教网 > 高中数学 > 题目详情

【题目】如图三棱柱中,侧面为菱形,.

(Ⅰ)证明:

(Ⅱ)若AB=BC,求二面角的余弦值.

【答案】1)见解析;(2

【解析】

试题分析:(1)由四边形是菱形可以得到,结合平面,因此,根据的中点得到.(2)由题设条件可证明,从而两两相互垂直,设为单位长,则建立如图所示空间直角坐标系,通过计算半平面的法向量的夹角来计算二面角的余弦值.

解析:(1)连接,交于点,连接,因为侧面为菱形,所以,且的中点,又所以平面.由于平面,故.又,故

(2)因为,且的中点,所以.又因为,所以,故,从而两两相互垂直,为坐标原点,的方向为轴正方向,为单位长,建立如图所示空间直角坐标系

因为,所以为等边三角形,又,则,设是平面的法向量,则,即,所以可取是平面的法向量,则,同理可取,所以二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax,其中e为自然对数的底数,a为常数.
(1)若对函数f(x)存在极小值,且极小值为0,求a的值;
(2)若对任意x∈[0, ],不等式f(x)≥ex(1﹣sinx)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,侧棱垂直于底面, 分别是的中点.

1)求证: 平面平面

2)求证: 平面

3)求三棱锥体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数y=f(x)的极值;
(2)若存在实数x0∈(﹣1,0),且 ,使得 ,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的离心率为 ,F是椭圆C的右焦点.过点F且斜率为k(k≠0)的直线l与椭圆C交于A,B两点,O是坐标原点.
(1)求n的值;
(2)若线段AB的垂直平分线在y轴的截距为 ,求k的值;
(3)是否存在点P(t,0),使得PF为∠APB的平分线?若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足an+1+(﹣1)nan=2n﹣1,则{an}的前60项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨);

“厨余垃圾”箱

“可回收物”箱

“其他垃圾”箱

厨余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60


(1)试估计厨余垃圾投放正确的概率;
(2)试估计生活垃圾投放错误的概率;
(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.
(求:S2= [ + +…+ ],其中 为数据x1 , x2 , …,xn的平均数)

查看答案和解析>>

同步练习册答案