精英家教网 > 高中数学 > 题目详情
如图,三棱锥P-ABC中,PA=a,AB=AC=2a,∠PAB=∠PAC=∠BAC=60°,求三棱锥P-ABC的体积.
精英家教网
分析:由题中数量关系知,取底面△ABC的边AB、AC的中点M、N,得棱长为a的正四面体P-AMN,求出它的体积,
三棱锥P-ABC的体积=4×三棱锥P-AMN的体积,从而求出体积.
解答:精英家教网解:如图,取AB、AC的中点M、N,连接PM,PN,MN,
则PA=AM=AN=a,由∠PAB=∠PAC=∠BAC=60°,
得:PM=PN=MN=a,∴三棱锥P-AMN是棱长为a的正四面体,它的体积为,
VP-AMN=
1
3
•S△AMN•h=
1
3
×
1
2
×a2×sin60°×
a2 -(
2
3
× 
3
2
a)
2
=
2
12
a3
三棱锥P-ABC的体积为,VP-ABC=
1
3
•S△ABC•h=
1
3
×4•S△AMN•h=4VP-AMN=
2
3
a3
点评:本题通过转化为正四面体,由正四面体的体积,求得锥体的体积,是一种很好的求体积的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱锥P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB
(Ⅰ)求证:AB⊥平面PCB;
(Ⅱ)求二面角C-PA-B的大小的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•石景山区一模)如图,三棱锥P-ABC中,
PA
AB
=
PA
AC
=
AB
AC
=0
PA
2
=
AC
2
=4
AB
2

(Ⅰ)求证:AB⊥平面PAC;
(Ⅱ)若M为线段PC上的点,设
|
PM|
|PC
|
,问λ为何值时能使直线PC⊥平面MAB;
(Ⅲ)求二面角C-PB-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)如图,三棱锥P-ABC中,侧面PAC⊥底面ABC,∠APC=90°,且AB=4,AP=PC=2,BC=2
2

(Ⅰ)求证:PA⊥平面PBC;
(Ⅱ)若E为侧棱PB的中点,求直线AE与底面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳二模)如图,三棱锥P-ABC中,PA丄面ABC,∠ABC=90°,PA=AB=1,BC=2,则P-ABC的外接球的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在三棱锥P-ABC中,AB⊥PC,AC=2,BC=4,AB=2
3
,∠PCA=30°.
(1)求证:AB⊥平面PAC. (2)设二面角A-PC-B•的大小为θ•,求tanθ•的值.

查看答案和解析>>

同步练习册答案