【题目】如图,四棱锥E﹣ABCD的侧棱DE与四棱锥F﹣ABCD的侧棱BF都与底面ABCD垂直,
,
//
,
.
![]()
(1)证明:
//平面BCE.
(2)设平面ABF与平面CDF所成的二面角为θ,求
.
【答案】(1)证明见解析(2)![]()
【解析】
(1)根据线面垂直的性质定理,可得DE//BF,然后根据勾股定理计算可得BF=DE,最后利用线面平行的判定定理,可得结果.
(2)利用建系的方法,可得平面ABF的一个法向量为
,平面CDF的法向量为
,然后利用向量的夹角公式以及平方关系,可得结果.
(1)因为DE⊥平面ABCD,所以DE
AD,
因为AD=4,AE=5,DE=3,同理BF=3,
又DE⊥平面ABCD,BF⊥平面ABCD,
所以DE//BF,又BF=DE,
所以平行四边形BEDF,故DF//BE,
因为BE
平面BCE,DF
平面BCE
所以DF//平面BCE;
(2)建立如图空间直角坐标系,
![]()
则D(0,0,0),A(4,0,0),
C(0,4,0),F(4,3,﹣3),
,
设平面CDF的法向量为
,
由
,令x=3,得
,
易知平面ABF的一个法向量为
,
所以
,
故
.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程和
的直角坐标方程;
(2)设
是曲线
上一点,此时参数
,将射线
绕原点
逆时针旋转
交曲线
于点
,记曲线
的上顶点为点
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,过点
的动直线
交抛物线于
,
两点
(1)当
恰为
的中点时,求直线
的方程;
(2)抛物线上是否存在一个定点
,使得以弦
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
与曲线
,(
为参数).以坐标原点为极点,
轴的正半轴为极轴建立极坐标系.
(1)写出曲线
,
的极坐标方程;
(2)在极坐标系中,已知
与
,
的公共点分别为
,
,
,当
时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
且
).
(1)若
的定义域为
,判断
的单调性,并加以说明;
(2)当
时,是否存在
,
,使得
在区间
上的值域为
,若存在,求
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的各项均为正数,前
项和
满足
;数列
是等比数列,前
项和为
.
(1)求数列
的通项公式;
(2)已知等比数列
满足
,
,
,求数列
前
项和为
;
(3)若
,且等比数列
的公比
,若存在
,使得
,试求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0)的右焦点为F(1,0),且点P
在椭圆C上,O为坐标原点.
(1)求椭圆C的标准方程;
(2)设过定点T(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角,求直线l的斜率k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com