精英家教网 > 高中数学 > 题目详情

【题目】ABC角A,B,C的对边分别为a,b,c,cos C.

(1)·,求c的最小值;

(2)设向量x=(2sin B,-),y=,且x∥y,求sin(B-A)的值.

【答案】(1);(2).

【解析】

试题分析:(1)借助题设条件运用向量的数量积公式及余弦定理求解;(2)借助题设运用向量平行建立方程,再利用三角变换公式探求.

试题解析:

(1) · abcosC= ab=15…………………..3分

c2=a2+b2-2abcosC≥2ab-2ab·=21(当且仅当a=b时取等号).

c>0 c≥,…………………………………………………………..5分

c的最小值为…………………………………………………….7分

(2) x∥y 2sin Bcos2B=0

2sinBcosB+cos2B=0即sin 2B+cos2B=0

tan2B=- 2B= B=……………………10分

cos C= C>

B= (舍去) B=……………………………………………..12分

sin(B-A)=sin[B-(π-B-C)]

=sin=sinCcos-cos Csin

××…………………………………………..16分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数其中是自然对数的底数.

(1)求曲线处的切线方程为求实数的值

(2)函数既有极大值又有极小值求实数的取值范围

对一切正实数恒成立求实数的取值范围(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后2次抛掷一枚骰子,将得到的点数分别记为

)求满足的概率;

)设三条线段的长分别为5,求这三条线段能围成等腰三角形(含等边三角形)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 表示导函数.

(1)当时,求函数在点处的切线方程;

(2)讨论函数的单调区间;

(3)对于曲线上的不同两点,求证:存在唯一的,使直线的斜率等于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在.

(1)求居民收入在的频率;

(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;

(3)为了分析居民的收入与年龄、职业等方面的关系,从这10000人中用分层抽样方法抽出100人作进一步分析,则应月收入为的人中抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为

(1)若为等边三角形,求椭圆的方程;

(2)若椭圆的短轴为2,过点的直线与椭圆相交于两点,且求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的离心率为,右顶点为,直线过原点,且点x轴的上方,直线分别交直线于点.

1)若点,求椭圆的方程及ABC的面积;

2)若为动点,设直线的斜率分别为.

试问是否为定值?若为定值,请求出;否则,请说明理由;

△AEF的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,为棱上一点,为线段上一点,.

)证明:平面

)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知两定点,⊙C的方程为.当⊙C的半径取最小值时:

(1)求出此时m的值,并写出⊙C的标准方程;

(2)在x轴上是否存在异于点E的另外一个点F,使得对于⊙C上任意一点P,总有为定值?若存在,求出点F的坐标,若不存在,请说明你的理由;

(3)在第(2)问的条件下,求的取值范围.

查看答案和解析>>

同步练习册答案