精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,椭圆的离心率为,右顶点为,直线过原点,且点x轴的上方,直线分别交直线于点.

1)若点,求椭圆的方程及ABC的面积;

2)若为动点,设直线的斜率分别为.

试问是否为定值?若为定值,请求出;否则,请说明理由;

△AEF的面积的最小值.

【答案】(1 2

【解析】试题分析:(1)根据题意的离心率及点B的坐标,建立方程,求出a的值,即可求ABC的面积;(2为定值,证明,由(1)得,即可得到结论;设直线AB的方程为y=k1x-a),直线AC的方程为y=k2x-a),令x=a+1得,求出AEF的面积,结合的结论,利用基本不等式,可求AEF的面积的最小值

试题解析:(1)由题意得解得

椭圆的方程为……………………………………………………3

ABC的面积.………………………4

2为定值,下证之:

证明:设,则,且.………………5

………………………7

由离心率,得

所以,为定值.……………………………………………8

由直线的点斜式方程,得直线的方程为,直线的方程为.

,得.

所以,AEF的面积…………………………10

由题意,直线的斜率.

于是,

当且仅当,即时取等号.………………………………11

所以,AEF的面积的最小值为.………12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为贯彻落实教育部等6部门《关于加快发展青少年校园足球的实施意见》,全面提高我市中学生的体质健康水平,普及足球知识和技能,市教体局决定矩形春季校园足球联赛,为迎接此次联赛,甲同学选拔了20名学生组成集训队,现统计了这20名学生的身高,记录如下表:

身高(

168

174

175

176

178

182

185

188

人数

1

2

4

3

5

1

3

1

(1)请计算20名学生的身高中位数、众数,并补充完成下面的茎叶图

(2)身高为185188的四名学生分别为先从这四名学生中选2名担任正副门将,请利用列举法列出所有可能情况,并求学生入选正门将的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后2次抛掷一枚骰子,将得到的点数分别记为

)求满足的概率;

三条线段的长分别为5求这三条线段能围成等腰三角形(含等边三角形)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC角A,B,C的对边分别为a,b,c,cos C.

(1)·,求c的最小值;

(2)设向量x=(2sin B,-),y=,且x∥y,求sin(B-A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线的距离之和的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)写出曲线的直角坐标方程;

2)已知直线轴的交点为,与曲线的交点为,若的中点为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 椭圆的离心率是,点在椭圆上, 设点分别是椭圆的右顶点和上顶点, 引椭圆的两条弦.

(1)求椭圆的方程;

(2)若直线的斜率是互为相反数.

直线的斜率是否为定值?若是求出该定值, 若不是,说明理由;

的面积分别为 ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天气预报显示,在今后的三天中,每一天下雨的概率为40%,现用随机模拟的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0--9之间整数值的随机数,并制定用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

则这三天中恰有两天下雨的概率近似为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是,样本数据分组为

(1)求直方图中的值;

(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿.

查看答案和解析>>

同步练习册答案