【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),以原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的直角坐标方程;
(2)已知直线
与
轴的交点为
,与曲线
的交点为
,
,若
的中点为
,求
的长.
科目:高中数学 来源: 题型:
【题目】设函数
,
表示
导函数.
(1)当
时,求函数
在点
处的切线方程;
(2)讨论函数
的单调区间;
(3)对于曲线
上的不同两点
,求证:存在唯一的
,使直线
的斜率等于
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点分别为
,
,短轴的两个端点分别为
,
.
(1)若
为等边三角形,求椭圆
的方程;
(2)若椭圆
的短轴长为2,过点
的直线
与椭圆
相交于
、
两点,且
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,椭圆
的离心率为
,右顶点为
,直线
过原点
,且点
在x轴的上方,直线
与
分别交直线
:
于点
、
.
![]()
(1)若点
,求椭圆的方程及△ABC的面积;
(2)若
为动点,设直线
与
的斜率分别为
、
.
①试问
是否为定值?若为定值,请求出;否则,请说明理由;
②求△AEF的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,ABC﹣A1B1C1是底面边长为2,高为
的正三棱柱,经过AB的截面与上底面相交于PQ,设C1P=λC1A1(0<λ<1).
![]()
(Ⅰ)证明:PQ∥A1B1;
(Ⅱ)当
时,在图中作出点C在平面ABQP内的正投影F(说明作法及理由),并求四面体CABF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体
,则下列说法不正确的是( )
A.若点
在直线
上运动时,三棱锥
的体积不变
B.若点
是平面
上到点
和
距离相等的点,则
点的轨迹是过
点的直线
C.若点
在直线
上运动时,直线
与平面
所成角的大小不变
D.若点
在直线
上运动时,二面角
的大小不变
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com