【题目】先后2次抛掷一枚骰子,将得到的点数分别记为
.
(Ⅰ)求满足
的概率;
(Ⅱ)设三条线段的长分别为
和5,求这三条线段能围成等腰三角形(含等边三角形)的概率.
【答案】(Ⅰ)
(Ⅱ)![]()
【解析】
试题分析:(Ⅰ)首先由a,b的值确定所有基本事件,由
可得到满足条件的点,求其比值可得到概率值;(Ⅱ)由等腰三角形分情况讨论可得到构成三角形的个数,从而求得相应的概率
试题解析:先后2次抛掷一枚骰子,将得到的点数分别记为
包含的基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),…,(6,5),(6,6),共36个.………………………2分
(Ⅰ)由于
,
∴满足条件的情况只有
,或
两种情况. ……………4分
∴满足
的概率为
. …………………………………………5分
(Ⅱ)∵三角形的一边长为5,三条线段围成等腰三角形,
∴当
时,
,共1个基本事件;
当
时,
,共1个基本事件;
当
时,
,共2个基本事件;
当
时,
,共2个基本事件;
当
时,
,共6个基本事件;
当
时,
,共2个基本事件;
∴满足条件的基本事件共有1+1+2+2+6+2=14个.…………………………11分
∴三条线段能围成等腰三角形的概率为
.…………………………………12分
科目:高中数学 来源: 题型:
【题目】如图所示,已知抛物线
,过点
任作一直线与
相交于
两点,过点
作
轴的平行线与直线
相交于点
为坐标原点).
(1)证明: 动点
在定直线上;
(2)作
的任意一条切线
(不含
轴), 与直线
相交于点
与(1)中的定直线相交于点
.
证明:
为定值, 并求此定值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的左、右焦点分别为
,
,点
在椭圆上,
,且
的面积为4.
(1)求椭圆的方程;
(2)点
是椭圆上任意一点,
分别是椭圆的左、右顶点,直线
与直线
分别交于
两点,试证:以
为直径的圆交
轴于定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先后2次抛掷一枚骰子,将得到的点数分别记为
.
(Ⅰ)求满足
的概率;
(Ⅱ)设三条线段的长分别为
和5,求这三条线段能围成等腰三角形(含等边三角形)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,
表示
导函数.
(1)当
时,求函数
在点
处的切线方程;
(2)讨论函数
的单调区间;
(3)对于曲线
上的不同两点
,求证:存在唯一的
,使直线
的斜率等于
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在
.
![]()
(1)求居民收入在
的频率;
(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;
(3)为了分析居民的收入与年龄、职业等方面的关系,从这10000人中用分层抽样方法抽出100人作进一步分析,则应月收入为
的人中抽取多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,椭圆
的离心率为
,右顶点为
,直线
过原点
,且点
在x轴的上方,直线
与
分别交直线
:
于点
、
.
![]()
(1)若点
,求椭圆的方程及△ABC的面积;
(2)若
为动点,设直线
与
的斜率分别为
、
.
①试问
是否为定值?若为定值,请求出;否则,请说明理由;
②求△AEF的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设l,m是两条不同的直线,α是一个平面,则下列命题正确的是( )
A. 若l⊥m,mα,则l⊥α
B. 若l⊥α,l∥m,则m⊥α
C. 若l∥α,mα,则l∥m
D. 若l∥α,m∥α,则l∥m
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com