分析 (1)利用等比数列的中项性质和公比的定义,及其前n项和公式即可得出a,n;
(2)求得bn=(2n+1)an=(2n+1)•2n-1.利用“错位相减法”与等比数列的前n项和公式即可得出.
解答 解:(1)∵各项均为正数的等比数列{an}的前三项为a,2,a+3,
∴22=a(a+3),化为a2+3a-4=0,解得a=1或-4.
∵a>0,∴a=1.
∴a1=1,a2=2,公比q=$\frac{{a}_{2}}{{a}_{1}}$=2.
∴Sn=63=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=$\frac{1-{2}^{n}}{1-2}$,解得n=6.
∴a=1,n=6.
(2)由(1)可得:an=2n-1.
bn=(2n+1)an=(2n+1)•2n-1.
∴数列{bn}的前n项和Tn=3•20+5•21+7•22+…+(2n+1)•2n-1,
∴2Tn=3•2+5•22+7•23+…+(2n+1)•2n,
∴-Tn=3+2(2+22+…+2n-1)-(2n+1)•2n
=3+2•$\frac{2(1-{2}^{n-1})}{1-2}$-(2n+1)•2n=(1-2n)•2n-1,
∴Tn=(2n-1)•2n+1.
点评 本题考查了等比数列的通项公式及其前n项和公式、数列的求和方法:“错位相减法”,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{20}$ | |
| B. | $\frac{50}{1002}$ | |
| C. | $\frac{1}{1001}$ | |
| D. | 有两个个体与其它个体被抽到的概率不相等 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 鞋码 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 合计 |
| 男生 | - | - | 3 | 6 | 8 | 11 | 12 | 6 | 7 | 2 | 55 |
| 女生 | 4 | 6 | 12 | 9 | 9 | 2 | 2 | - | - | 1 | 45 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com