精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足a2=1,|an+1﹣an|= ,若a2n+1>a2n﹣1 , a2n+2<a2n(n∈N+)则数列{(﹣1)nan}的前40项的和为(  )
A.
B.
C.
D.

【答案】D
【解析】解:∵数列{an}满足a2=1,|an+1﹣an|= ,则an+1﹣an

an+2﹣an+1= .∴an+2﹣an ± ,∵

n为偶数时,a2n+2<a2n(n∈N+),∴a2n+2﹣a2n=﹣ ±

n为奇数时,a2n+1>a2n﹣1,∴a2n+1﹣a2n﹣1= ±

综上可得:n为偶数时,an+1﹣an=﹣

n为奇数时,an+1﹣an=

∴数列{(﹣1)nan}的前40项=(a2﹣a1)+(a4﹣a3)+…+(a40﹣a39

= +…+

= +…+

=

=

所以答案是:D.

【考点精析】本题主要考查了数列的前n项和的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】P(x0 , y0)(x0≠±a)是双曲线E: 上一点,M,N分别是双曲线E的左右顶点,直线PM,PN的斜率之积为
(1)求双曲线的离心率;
(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足 ,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:已知函数f(x)=﹣ +2ax,
(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线的斜率为﹣6,求实数a;
(Ⅱ)若a=1,求f(x)的极值;
(Ⅲ)当0<a<2时,f(x)在[1,4]上的最小值为﹣ ,求f(x)在该区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象如图,则函数表达式为;若将该函数向左平移1个单位,再保持纵坐标不变,横坐标缩短为原来的 倍得到函数g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}定义为a1>0,a11=a,an+1=an+ an2 , n∈N*
(1)若a1= (a>0),求 + +…+ 的值;
(2)当a>0时,定义数列{bn},b1=ak(k≥12),bn+1=﹣1+ ,是否存在正整数i,j(i≤j),使得bi+bj=a+ a2+ ﹣1.如果存在,求出一组(i,j),如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0),F(﹣c,0)为其左焦点,点P(﹣ ,0),A1 , A2分别为椭圆的左、右顶点,且|A1A2|=4,|PA1|= |A1F|.
(1)求椭圆C的方程;
(2)过点A1作两条射线分别与椭圆交于M、N两点(均异于点A1),且A1M⊥A1N,证明:直线MN恒过x轴上的一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}与{bn}满足an+1﹣an=2(bn+1﹣bn),n∈N+ , bn=2n﹣1,且a1=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设 ,Tn为数列{cn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1米,且AC比AB长0.5米,为了稳固广告牌,要求AC越短越好,则AC最短为(  )

A.(1+ )米
B.2米
C.(1+ )米
D.(2+ )米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记等差数列{an}的前n项和为Sn
(1)求证:数列{ }是等差数列;
(2)若a1=1,对任意的n∈N*,n≥2,均有 是公差为1的等差数列,求使 为整数的正整数k的取值集合;
(3)记bn=a (a>0),求证:

查看答案和解析>>

同步练习册答案