精英家教网 > 高中数学 > 题目详情
2.已知直线l1为曲线y=x2+x-2在点(0,-2)处的切线,l2为该曲线的另一条切线,且l1⊥l2
①求直线l1的方程;
②求直线l2的方程.

分析 ①先利用导数求出在x=0处的导函数值,求出l1的斜率.从而问题解决.
②设出切点坐标,求出斜率,求出切点坐标,即可求解切线方程.

解答 解:①y′=2x+1,则y′|x=0=1.
直线l1的方程为y+2=x.
即x-y-2=0.
②设直线l2过曲线y=x2+x-2上的点B(b,b2+b-2),则l2的方程为y=(2b+1)x-b2-2
因为l1⊥l2,则有k2=2b+1=-1,b=-1.可得B(-1,-2).
直线l2的方程为:y+2=-(x+1),即x+y+3=0.

点评 本题主要考查了利用导数研究曲线上某点切线方程,以及两条直线垂直的性质和分析问题、综合运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某校教师进行体格检查,测得他们的收缩压(血压,单位:毫米汞柱)的值如表所示:
收缩压范围 89.5~104.4 104.5~119.4 119.5~134.4 134.5~149.4149.5~164.4  164.5~179.4
 人数 24 62 7226  124
求该校教师收缩压的平均数和中位数(用各收缩压范围的中点的值代表该范围取值,结果精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2+1,g(x)=lg(2x-1),求f(2x-1),f(g(x)),g(f(x)).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某课题组对全班45名同学的饮食习惯进行了一次调查,并用茎叶图表示45名同学的饮食指数,说明:图中饮食指数低于70的人被认为喜食蔬菜,饮食指数不低于70的人被认为喜食肉类.
(1)求饮食指数在[10,39]女同学中选取2人,恰有1人在[20,29]中的概率.
(2)根据茎叶图,完成2×2列联表,并判断是否有90%的把握认为喜食蔬菜还是喜食肉类与性别有关,说明理由.
喜食蔬菜喜食肉类合计
男同学
女同学
合计
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
如表临界值表仅供参考:
P(k2≥k)0.1000.0500.010
k2.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线$\frac{x^2}{m+2}$-$\frac{y^2}{m+1}$=1的离心率为$\frac{{\sqrt{7}}}{2}$,则m=2或-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在腰长为2的等腰直角三角形内任取一点,则使得该点到此三角形的三个顶点的距离都不小于1的概率为(  )
A.1-$\frac{π}{2}$B.1-$\frac{π}{4}$C.1-$\frac{π}{8}$D.1-$\frac{π}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,如果输出的S=$\frac{1}{15}$,那么判断框内应填入的条件是(  )
A.i<3B.i<4C.i<5D.i<6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若变量x,y满足约束条件$\left\{{\begin{array}{l}{4x+3y-25≤0}\\{x-2y+2≤0}\\{x-1≥0}\end{array}}\right.$,则$\sqrt{{x^2}+{y^2}}$的最大值为5$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点F是椭圆T:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{5{m}^{2}}$=1(m>0)的上焦点,F1是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点.若线段FF1的中点P恰好为椭圆T与双曲线C的渐近线在第一象限内的交点,则双曲线C的离心率为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案