(本题13分)已知函数。
(Ⅰ)若,试判断并证明的单调性;
(Ⅱ)若函数在上单调,且存在使成立,求的取值范围;
(Ⅲ)当时,求函数的最大值的表达式。
(Ⅰ)用定义证明函数的单调性;(Ⅱ);(Ⅲ)。
解析试题分析:(Ⅰ)当时,在上单调递增 1分
证明: 1分
则
2分
,在上单调递增。
(Ⅱ)当时,
由于
则
则当时,,单调增;
当时,,单调减。
所以,当时,在上单调增; 2分
又存在使成立
所以。 2分
综上,的取值范围为。
(Ⅲ)当时,
由(Ⅰ)知在区间上单调递增, 1分
由(Ⅱ)知,①当时,在上单调增,
②当时,在上单调递增,在上单调递减,
又因为在上是连续函数
所以,①当时,在上单调增,则;
②当时,在上单调增,在上单调减,在上单调增,
2分
则
综上,的最大值的表达式。 2分
考点:函数的单调性;函数的最值;基本不等式。
点评:解决恒成立问题常用变量分离法,变量分离法主要通过两个基本思想解决恒成立问题, 思路1:在上恒成立
科目:高中数学 来源: 题型:解答题
已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程x2-3ax+2a2+1=0的两个实根均大于3.若p或q为真,p且q为假,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
设函数f (x)=,其中a∈R.
(1)若a=1,f (x)的定义域为[0,3],求f (x)的最大值和最小值.
(2)若函数f (x)的定义域为区间(0,+∞),求a的取值范围使f (x)在定义域内是单调减函数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com